
Notes on CUDA practicals on “skynet” cluster

Prof. Mike Giles

1 Head and compute nodes

The head node of the skynet cluster is

• name: skynet.osc.ox.ac.uk

• IP address: 192.168.50.1

This can be accessed from machines on the university network through an SSH
command:

ssh -X skynet.osc.ox.ac.uk

or

ssh -X username@skynet.osc.ox.ac.uk

if the username on skynet is different.

This head node does not have any NVIDIA graphics cards and so it can only be
used to compile CUDA codes and run them using the emulation mode. For native
execution of CUDA code one has to use one of the eight compute nodes, each of which
has

• 2 quad-core Intel Xeons and 8GB main memory

• 2 C1060 cards (one half of a Tesla S1070) each with 240 cores and 4GB of
graphics memory

• Gigabit Ethernet and Infiniband networking (for multi-node HPC applications)

To use one of the compute nodes, you can either follow the instructions on the
skynet help pages to submit a batch job using qsub, or you can create an interactive
session on one of the compute nodes by issuing the command:

1



qsub -IVX

You can then edit and compile your code as usual, and run it on one of the two
GPUs attached to each compute node.

Using an interactive session is appropriate when developing codes using test runs
which last no more than a few seconds. When doing “production” runs you should
use the batch submission system.

2 CUDA version 2.3

To use CUDA version 2.3 you must enter the commands:

module add cuda/2.3

module initadd cuda/2.3

You only have to do this once; it will remain set up correctly the next time you
log in. Amongst other things, this will set your PATH environment variable so that
you can use the NVIDIA compiler nvcc and access the relevant header files.

The SDK (software development kit) is located at /opt/cuda/2.3/sdk. Its C/src
subdirectory has lots of useful example codes, and the C/common subdirectory has
various useful utilities, header files and libraries.

3 Editing

emacs, vi and gedit are all available on skynet. Windows users who are unused to
Linux editors may prefer gedit which can be launched in its own window using the
command:

gedit &

Using gedit you can open and save files by clicking on icons, so it’s very easy to
use, though it doesn’t have the advanced features of emacs.

4 Makefile

The CUDA SDK comes with a “master” Makefile called common.mk. The user’s
Makefile references this and specifies various files to be compiled, identifying which
are CUDA files and which are regular C++ files, and setting various compiler flags.

2



To execute the Makefile there are 4 options

• make creates a standard CUDA executable

• make dbg=1 creates an executable with error-checking enabled

• make emu=1 creates an executable to be run under emulation (on the CPU)

• make emu=1 dbg=1 creates an emulation executable with error-checking

The executables usually get put in subdirectories called ../../bin/linux/release,

../../bin/linux/debug, etc., but a modification to the user’s Makefile puts them
instead in bin/release, bin/debug, etc., as subdirectories of the directory holding
the Makefile and the source files.

Finally, the command

make -n

(which can be combined, if wanted, with dbg=1 and/or emu=1) is helpful in showing
what make would do if the -n flag were omitted. This shows how it compiled each
of the files into object files (using nvcc for the CUDA files and, usually, gcc/g++ for
the plain C/C++ files, and then linking them all together with the relevant libraries
to form the executable.

5 File transfer and printing

Files should be transferred using scp to your home system (which is in the Thom
building for the CUDA course) for local printing. You could create a ssh-print

script on skynet to copy the file to your home system and print it.

3


