Monte Carlo implementations
on GPUs

David B. Thomas
Imperial College
dtlO@doc.ic.ac.uk



mailto:dt10@doc.ic.ac.uk

Who am 1?

* Research fellow at Imperial
— Software Engineering and FPGA background
— Lead a small group looking at accelerated computational finance

« What do | have to do with GPUs or finance?

— Most of my work: tools and methods for FPGA-based finance

— Compare performance of FPGA, CPU, and now GPU
« |nitial CPU solution: day or so
» Develop FPGA solution: couple of weeks or months
« GPU solutions (keep paper reviewers happy): couple of days
— Usually find FPGA and GPU about the same performance
« GPU: 10x developer productivity; FPGA 10x more power efficient



Who am 1?

* Research fellow at Imperial
— Software Engineering and FPGA background
— Lead a small group looking at accelerated computational finance

« What do | have to do with GPUs or finance?

— Most of my work: tools and methods for FPGA-based finance

— Compare performance of FPGA, CPU, and now GPU
« |nitial CPU solution: day or so
» Develop FPGA solution: couple of weeks or months
« GPU solutions (keep paper reviewers happy): couple of days

— Usually find FPGA and GPU about the same performance
« GPU: 10x developer productivity; FPGA 10x more power efficient
* NVidia guy: “Why are you still wasting time with FPGAs”?
— I’'m an academic: want to look at the hard(-ish) unsolved problems
— GPUs are mainstream: anyone can do it (that's why you are here)



Who are you?

| have no idea — my guesses about you
— Interested in, or actively working in financial modelling
— Are a programmer in some sense (this is a hands on workshop)

— Know something about CUDA/GPUs, but are not an expert

« Apologies if you have no knowledge about CUDA or GPUs

« Sorry if you are a hard-core expert: if you are, why aren’t you talking?
— Wondering whether to use GPUs, or how to use them better

My guesses about what you might want to hear

1. General experiences with GPU Monte-Carlo: random (ha-hal!) tips
2. Specific things to watch out for: performance and correctness

3. Hard-core optimisation: new uniform random number generator

What you won't hear
— Anything specific about pricing models or finance
— Not enough time; everyone does something different



What is a GPU?

Means different things to different people

1.
2. Something made by NVidia that runs CUDA?
3.

4. A hardware accelerator that supports OpenCL?

Something that was originally developed for use in graphics?

A wide SIMD processor using threads to hide latency?



What is a GPU?

Means different things to different people

1. Something that was originally developed for use in graphics?
2. Something made by NVidia that runs CUDA?

3. Awide SIMD processor using threads to hide latency?

4. A hardware accelerator that supports OpenCL?

For the purposes of this talk: option 2
— CUDA is ahead of the competition in terms of tools
— Everyone else here will talk CUDA/NVidia

In a couple of years time (hopefully): option 4
— NVidia deserve huge credit for developing and promoting CUDA

— But... you are the end-users: seek portability, don’t get locked in
 FPGA accelerators existed for 10 years: no portability, no market

— Encourage NVidia/AMD/Intel to compete on hardware



GPU: Central concepts

 CPUs devote very little silicon area to actual computation
— Most of the area is trying to make sequential code faster
— Cache: decrease latency, increase bandwidth
— Branch prediction/speculation: decrease the cost of branches

 GPUs devote as much area as possible to computation
— Stick as many floating-point units on as possible
— Get rid of the huge caches and super-scalar stuff

« Manage latency by building multi-threading in at low level
— GPU memory latency is similar to CPU: still have to deal with it

— Have thousands of active threads in one processor
— If one thread stalls on memory, schedule the next one



GPU: Threading

*Threads are grouped into warps

—Warp size is currently 32 threads __global

— Threads never change their warp void MyKernel (

i i igned *pM
« Assigned to warps using threadldx ){unSlgne pMem

int wIdx=tIdx.x/32;
int wOff=tIdx.x-32*wlIdx;

if (Condition()) {
DoOneThing () ;
}else(
DoOtherThing () ;
}

int addr=
wldx*32+ ((wOff+1)%32);
pMem[addr]=Something () ;
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—Warp size is currently 32 threads
— Threads never change their warp
» Assigned to warps using threadldx
*Warps are important for compute efficiency
— One thread branches -> warp branches
— Threads take different branches: divergence

— Ideally: all threads in warp take same branch
* No divergence, better performance
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» Assigned to warps using threadldx
*Warps are important for compute efficiency
— One thread branches -> warp branches
— Threads take different branches: divergence
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*Warps are important for memory efficiency
— Determine global memory coalescing(!!
— Determine shared memory conflictsl]
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GPU: Threading

*Threads are grouped into warps
—Warp size is currently 32 threads
— Threads never change their warp
» Assigned to warps using threadldx
*Warps are important for compute efficiency
— One thread branches -> warp branches
— Threads take different branches: divergence
— Ideally: all threads in warp take same branch
» No divergence, better performance
*Warps are important for memory efficiency
— Determine global memory coalescing(!!
— Determine shared memory conflictsl]
*Make sure you understand warps!

— More important than threads
— Read the user guide (twice)

__global
void MyKernel (
unsigned *pMem
) {
int wIdx=tIdx.x/32;
int wOff=tIdx.x-32*wIdx;

if (Condition()) {
DoOneThing () ;
}else(
DoOtherThing () ;
}

int addr=
wldx*32+ ((wOff+1)%32);
pMem[addr]=Something () ;

[1] — Yeah, half-warps, whatever




Example: Rejection Methods

« Warp divergence hurts performance

— Scalar code does not take into account
— CPU algorithms are often divergent

* Rejection: optimise for average case

— Generate cheap random candidate
« Simple transform of uniform RNG
— Check candidate with cheap test

— Otherwise use a slow alternative

u=UnifRng () ;

x=Candidate (u) ;
1f (Accept (x))
return Xx;

else

return Slow () ;

* May be recursive

* e.g. Ziggurat method for uniform to Gaussian conversion
— Fast: one uniform RNG, one comparison, one multiply
— Slow: looping, exponentials, logs, more uniform RNGs
— Designed so that fast route is taken ~98% of time
— The Ziggurat algorithm is a work of art — superb for scalar CPUs



Example: Rejection Methods

« Economics of rejection break down with GPU style SIMD

— Threads execute in warps

— Each thread can take different path through code
— Time for warp is total time to cover paths of all threads

Thread O Thread 1 Thread 2 Thread 3
x=Candidate(); x=Candidate(); x=Candidate(); x=Candidate();
if(Accept(x)) if(Accept(x)) if(Accept(x)) if(Accept(x))

return x; return x; return x; return x;

else
return Slow();

else
return Slow();

else
return Slow();

else
return Slow();
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Example: Rejection Methods

« Economics of rejection break down with GPU style SIMD
— Threads execute in warps
— Each thread can take different path through code
— Time for warp is total time to cover paths of all threads

* Rejection relies on low probability of slow path
— Entire thread group incurs cost of one slow thread
— Probability of each thread taking fast path is ~98%
— Probability of all 32 threads taking fast path is ~52%
— Expected execution time: t;_ ., + 0.48 t

slow

* Non-rejection algorithms are (usually) better in GPU
— Has built-in fast log/exp/sin: use Box-Muller method
— Rational approximations are your friend: very fast



The perils of function approximation

 Simulations need functions with no closed form
— Standard examples: Gaussian CDF (Phi(x)) and ICDF (Phi-1(x))

« Obvious pointlll: read the documentation, see if it exists

— CUDA already includes the error function as intrinsics
« erff, erfcf . p = Phi(x) = erfc[x / -sqrt(2)] / 2
o erfinvf, erfcinvf : x = Phit(p) = erfcinf[ 2 p ] * -sqrt(2)
— If you're off the critical path, intrinsics are good enough
» Aside: you would think they would be super fast, but they aren’t

« Lets assume we are doing CDF inversion
— e.g. we are using Quasi-RNGs, or some other variance reduction
— Inversion: take a uniform 32-bit number u, turn it into Gaussian x
— Obvious: x=Phit(u*23?))

[1] — Yup, | didn’t read the documentation, and wasted time doing my own.



CDF Inversion: simple

__device
float NormalCdfInv (
unsigned u

) {
const float Sl=pow(2,-32);

const float S2=-sqgrt(2);

//10..232) -> [0,1)
float p=u*Sl;

I/ Phi(x) = -sqrt(2)*erfcinv(2*p)
return S2*erfcinv (2*p);

| apologise if this is obvious. Not everyone knows about this stuff.



CDF Inversion: simple, but deceptive

* First problem: lower bound

— NormalCdfinv(0) = - infinity __device
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CDF Inversion: simple, but deceptive

* First problem: lower bound

— NormalCdflnv(0) = - infinity __device
] ] float NormalCdfInv (
« Simple solution: nudge away from O unsigned u

o ) |
— Add 27-33 during integer->float conv. const float Sl=pow (2,-32);

const float S2=-sqgrt(2);
const float S3=pow(2,-33);

/1 10..232) -> (0,1)
float p=u*S1 + S3;

/1 Phi(x) = -sqgrt(2)*erfcinv(2*p)

return S2*erfcinv (2*p);

Sorry, this is floating-point 101, but not everyone knows about it. For instance, browse the CUDA SDK samples...



CDF Inversion: simple, but deceptive

* First problem: lower bound
— NormalCdflnv(0) = - infinity __device

float NormalCdfInv (

« Simple solution: nudge away from O | unsigned u

— Add 27-33 during integer->float conv. const float Sl=pow (2,-32);
const float S2=-sqgrt(2);
* Next problem: upper bound const float S3-pow(2,-33);
— NormalCdfinv(232-1) = infinity 1110..2%2) -> (0,1)
. Why’? float p=u*S1 + S3;
e p= U *2324233 Il Phi-}(x) = -sqrt(2)*erfcinv(2*p)
.+ p= (2,\32_1) * 9-32 4 2-33 return S2*erfcinv (2*p);

* p =0.99999999988358467
— But in single-precision p=1

« Time to talk about single-precision

Sorry, this is floating-point 101, but not everyone knows about it. For instance, browse the CUDA SDK samples...



An aside: GPUs and single-precision

Lets be clear: single-precision is not some kind of flaw
— It doesn’t make anything impossible
— It doesn’t mean your answers will automatically be inaccurate

However, it requires the programmer to think
— Need a basic understanding of floating-point arithmetic
— Must understand how numbers are being manipulated

How much do you care about performance vs. effort?
— Use double-precision: lower effort, but lower performance
— Legitimate choice — you don’t have to use single precision

Double-precision will get faster with newer hardware
— Will it ever be as fast as single-precision? (Maybe it already is?)
— Even so: still a performance hit from memory - twice the size



Integer to floating-point

» Fixed-point (integer) and floating-point are for different jobs
— Floating-point: accuracy relative to magnitude, over infinitel!! range
— Fixed-point: accuracy independent of magnitude, over finite range

0 0.25 0.5 0.75
Integer

(fixed-point)

Floating-point MU LLLL | | |

Integer to

Floating-point [ O O \ \ ‘ ‘ \

- | | | |
outputgrid 0.25 0.5 075 123

[1] : infinite-ish — there are obviously exponent limits
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Integer to floating-point

Fixed-point (integer) and floating-point are for different jobs

— Floating-point: accuracy relative to magnitude, over infinitel!! range

— Fixed-point: accuracy independent of magnitude, over finite range

Integer
(fixed-point)

Floating-point

Integer to
Floating-point
output grid

0 0.25 0.5 0.75 1
[ N A [ N O [ | | | | 1| |
) |
N I A | |
0 0.25 0.5 0.75 1-23 1

[1] : infinite-ish — there are obviously exponent limits



Integer to floating-point

» Fixed-point (integer) and floating-point are for different jobs
— Floating-point: accuracy relative to magnitude, over infinitel!! range
— Fixed-point: accuracy independent of magnitude, over finite range

0 0.25 0.5 0.75
Integer |||||

(fixed-point) ‘ ‘

1

Floating-point

Integer to
Floating-point

output grid

[1] : infinite-ish — there are obviously exponent limits



Back to Inversion

5.5 = Saa
5.6 —
57 i
5.8 v
/

-5.9 / — Lower Tall
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6.1 / —— Upper Tail (Reflected)
|

-6.2
-6.3
'64 I I I I I I I

0.E+00 5.E-09 1.E-08 2.E-08 2.E-08 3.E-08 3.E-08 4.E-08 4.E-08

« So the lower (negative) tail is fine, but the upper (positive) tail is not
— Largest uniform inputs result in infinity — with probability about 2-24 !
« Even if we solve the infinities, upper tail is ruined
— Positive half of distribution is discretised into only 224 values
* This will mess up long-running simulations
— Distribution is not symmetric — mean will not be zero
— Higher moments are all slightly disturbed
— Effects of low-discrepancy sequence reduced in upper half



CDF Inversion: a reasonable solution

* Check whether p > 0.5

— Do it before conversion to floating-point

device

float NormalCdfInv (

) {

unsigned u

const float Sl=pow(2,-32);
const float S2=-sqgrt(2);
const float S3=pow(2,-33);

//]0..232) -> (0,1)

float s = S2;

if (u>=0x80000000) {
u=0xFFFFFFFF - u;
s = =-S2;

}

float p=u*S1 + S3;

return s*erfcinv (2*p);




CDF Inversion: a reasonable solution

* Check whether p > 0.5

— Do it before conversion to floating-point
« If p>0.5 then reflect into lower tall

— Setp =1-p (stillininteger form)

— Record the saved sign for later

device

float NormalCdfInv (

) {

unsigned u

const float Sl=pow(2,-32);
const float S2=-sqgrt(2);
const float S3=pow(2,-33);

//]0..232) -> (0,1)

float s = S2;

if (u>=0x80000000) {
u=0xFFFFFFFF - u;
s = -S2;

}

float p=u*S1 + S3;

return s*erfcinv (2*p);




CDF Inversion: a reasonable solution

device
Check whether p > 0.5 o e ety
— Do it before conversion to floating-point ){unsigned u
If p>0.5 then reflect into lower tall const float S1=pow(2,-32);

o const float S2=-sqgrt(2);

— Setp =1-p (stillininteger form) const float S3=pow(2,-33);
— Record the saved sign for later 1110..2%2) -> (0,1)
Keep original nudging solution e eeB000h000
— Sitill works fine from both ends OwEITERERE T W
Restore the sign in the final step }
— We had to do a multiply here anyway float p=u*Sl + 53;

return s*erfcinv (2*p) ;

)




CDF Inversion: a reasonable solution

« Performance impact is fairly small
— Branch can be handled with predication
— Majority of work is still in erfcinv
— 6.6 Glnv/sec vs. 6.1 GInv/sec

« About 8% perf. loss: Is it worth it?
— No infinities....

— Output distribution is symmetric
« Correct mean and odd moments

— Finest resolution concentrated in tails
« High variance regions: QRNG effective
 Even moments more accurate

 |f you want the right answer...

device

float NormalCdfInv (

) {

unsigned u

const float Sl=pow(2,-32);
const float S2=-sqgrt(2);
const float S3=pow(2,-33);

//]0..232) -> (0,1)

float s = S2;

1f (u>=0x80000000) {
u=0xFFFFFFFF - u;
s = =-S2;

}

float p=u*S1 + S3;

return s*erfcinv (2*p);




Beware code in the wild

« Code for quasi-random simulation using inversion
— From an unnamed source of GPU example code

L1777 77 777777770 777777777777777777777777777777/7777777777777777777777777777777777
// Moro's Inverse Cumulative Normal Distribution function approximation

N N N NN,
#ifndef DOUBLE PRECISION

device  inline float MoroInvCNDgpu(float P
const float al = 2.50662823884f;

const float a2 = -18.61500062529f;
const float a3 = 41.39119773534f;
<snip>

float y = P - 0.5f;
if (fabsf(y) < 0.42f) {

z =y *y;

z =y * (((ad*z+a3)*z+a2)*z+al)/ ((((bd*z+b3) *z+b2) *z+bl) *z+1.0f) ;
lelse/{

if(y > 0)

z = logf(- logf(l.0f = P));




When is single-precision not enough?

Some situations do require double-precision
— Always possible to work around, but not worth the risk and effort

Running sum over a stream of data

— Use double-precision when stream is more than ~100-1000
« Actual threshold is data-dependent: be safe rather than sorry

— Even though data is single-precision, sum in double-precision
— Possible exception: can use a Kahan accumulator (but test well!)

Statistical accumulators: mean and variance

— Always calculate means and variance in double-precision

— Even if nis small now, someone, eventually will say “use 32n”
Don’t be seduced by online/updating methods

— They can be quite useful — in double-precision
— They don't really help in single-precision
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Accuracy (Bits)
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General comments on floating-point

* None of these representation/precision ISSues are new
— Occur in high-performance computing all the time

— Lots of literature out there on safe single-precision

« “What Every Computer Scientist Should Know About
Floating-Point Arithmetic”, David Goldberg

« Think laterally: e.g. don’t forget the integers
— Convert to 32-bit fixed-point (float->uniform + multiply)
— Sum in 64-bit integer (two instructions: Cheap!)
— Can add 232 samples exactly, with no overflow

« GPUs can let you do a huge number of simulations
— Easy to lose track of the magnitude of the result set

— 232is not a large number of simulations; 240 is not uncommon
— Play safe: double-precision for statistical accumulators



Memory

Two types of memory: shared and global

Shared memory: small, but fast
— Can almost treat as registers, with added ability to index

Global memory: large, but slow
— Can’t be overstated how slow (comparatively) it is
— Minimise global memory traffic wherever possible

Other types of memory are facades over global memory

Constant memory: caches small part of global memory
— Doesn’t use global memory bandwidth once it is primed

Texture memory: caches larger part of global memory
— Cache misses cause global memory traffic
— Watch out!



Memory in MC: the buffer anti-pattern

Beware spurious memory buffers
— Strange anti-pattern that occurs
— | will generate all the uniforms
— Then transform all the gaussians
— Then construct all the paths

Not sure why it occurs
— Mental boundaries as buffers?

— Make testing easier?

Usually bad for performance

— Buffers must go in global memory

In many apps. it can’t be avoided
— But often it can

void MySimulation ()

{

}

__global
unsigned uBuff[n*k],gBuff[n*k],...;

GenUniform(n, k, uBuff);

__syncthreads () ;

UnifToGaussian (n, k,uBuff,gBuff);

__syncthreads () ;

ConstructPath (n, k,gBuff,pBuff);

__syncthreads () ;

CalcPayoff (n, k,pBuff);

__syncthreads () ;




Memory in MC: reduce and re-use

void MySimulation ()

{
__global

unsigned uBuff[n*k],gBuff[n*k],...;

GenUniform(n, k, uBuff) ;

__syncthreads () ;

UnifToGaussian (n, k,uBuff,gBuff);

__syncthreads () ;

ConstructPath(n, k,gBuff,pBuff);

__syncthreads () ;

CalcPayoff (n, k,pBuff) ;

__syncthreads () ;

void MySimulation ()

{
shared  int buff[k];

for (int i=0;i<n;i++) {
GenUniform(k, buff);

__syncthreads () ;

UnifToGaussian (k,buff) ;

__syncthreads () ;

ConstructPath (k,buff);

__syncthreads () ;

CalcPayoff (k,buff);

__syncthreads () ;

If possible: make a buffer big enough for just one task and operate in-place




Optimisation is highly non-linear

« Small changes produce huge performance swings...
» Changing the number of threads per block
» Altering the order of independent statements
» Supposedly redundant __syncthread() calls

« General practises apply for Monte Carlo
— Use large grid sizes: larger than you might expect
— Allocate arrays to physical memory very carefully

— Keep out of global memory in inner loops (and outer loops)
» Prefer computation to global memory

— Keep threads in a branch together
» Prefer more complex algorithms with no branches
« Watch out for statistical branching



Time Relative to Single
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The compiler+GPU is a black box
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Uniform Random Number Generation

Goal: generate stream of numbers that “looks random”

Generated by deterministic mechanism (Pseudo-Random)
— Must use only standard CPU instructions (unlike True-RNG)
— Can start two RNGs from same seed and get same stream

Long period: deterministic generators must repeat
— Rule of thumb: if we use n samples, must have period >> n?
— In practise: would prefer period of at least 2128

Statistically random: high entropy, “random looking”
— Check using test batteries: look for local correlations and biases
— Theoretical tests: prove properties of entire sequence



Basics of RNGs

State-space: each RNG has a finite set of states s
— Given n bits in the state, maximum period is 2"
— Period of 21?8 -> must have at least 4 words in state

Transition function: moves generator from state to state
— f:s->s

Output function: convert current state into output sample
— g:s->[0..2%%) or g:s->[0,1)

Choose an initial seed sy \in s

— Si=H(s)

- X, = 9(s)

Period: smallest p such that for all i : X, ,=X;



Existing RNGS

 Lots of existing software generators
— Linear Congruential
— Multiply Recursive
— XorShift
— Lagged Fibonacci
— Mersenne Twister

« We can still use these existing generators in a GPU
— Useful for checking results against CPU

« But! Why not derive new generators for GPU
— GPU has interesting features: lets use them
— CPU and GPU costs are different: old algorithms difficult to use



Example: Mersenne Twister

unsigned MT19937(unsigned &i, unsigned *s) 624 words of state
{

t0 = s[i%N]; // can be cached in register > ===k B PP =P

t1 = s[(i+1)%N];

t2 = s[(i+M)%N];

tmp =someShiftsAndXors(t0,t1,t2); Shifts j
s[i%n] = tmp; r and xors |
i++;
return moreShiftsAndXors(tmp);

} Random Sample

* Well respected generator, widely used
— Excellent quality: good theoretical and empirical quality
— Very long period: 219937
— Efficient in software
* Requires a state of 624 words organised as circular buffer
— Two reads and one write per cycle



Basic approach: one RNG per thread
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The memory bottleneck

Each thread does two reads and one write per sample

— 12 bytes of traffic to global memory per sample
— Total bandwidth is about 18GB/s on C1060
— Maximum generation rate: ~1.5 GSamples/s

Might seem like a an acceptable rate
— RNG is driving simulation: can use up memory latency cycles
— What if simulation needs to use global memory as well?

More sophisticated approaches are possible

— Place RNG states in shared memory in clever ways

— Code gets very complicated, and RNG API more complex
« We want a function that looks like rand()

But... why not try something new?



The memory bottleneck
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Designing from scratch for a GPU

Where can we store RNG state on a GPU
— Global memory: large, very slow
— Shared memory: small, fast
— Registers: small, fast, can’t be indexed

Could store state in shared memory?
— But would need four or more words per thread... too expensive

Could store state in registers?
— Around four registers per thread is ok, but only allows period 2128
— RNG generator function must be complex (and slow) for quality

One solution: period 2128 generator using registers
— e.g. Marsaglia’s KISS generator: excellent quality, but slow



Designing from scratch for a GPU

* Ok, what else does the GPU have that we can use?
— Automatically synchronised fine-grain warp-level parallelism
— Automatically synchronised warp-level access to shared memory

void rotateBlock (float *mem)

float tmp=s[ (tId+1l)sbDim]; ||void rotateWarp (float *mem)
__syncthreads () ; tmp=s [32*wIdx+ ( (WOff+1)%32)];
s[tId]=tmp; s[tIdx]=tmp;

__syncthreads () ; }

tId=threadIdx.x, bDim=blockDim.x wldx=tId/32, wOff=tId%32




Warp Generators

Each warp works on a shared RNG
— All threads execute transition step in parallel
— Each thread receives a new random number

RNG state storage is spread across multiple threads
— Overhead per thread is low, but can still get long periods

Communicate via shared memory
— Threads within warp can operate without synchronisation
— Accesses are fast as long as we observe the rules

Fine-grain parallelism increases quality
— Relatively simple per-thread operation
— Complex transformation to overall state



const unsigned K=4; // Warp size
#define (wId threadIdx.x / K)
#fdefine (wOff threadIdx.x % K)

const unsigned Qal[K] = {2, 0, 3, 1};
const unsigned Qb[K] = {1, 3, 0, 2};
const unsigned Za = 3;

const unsigned Zb[K] = {1, 2, 1, 3}

// RNG state, one word per thread
___shared  unsigned s[];

// Generate new number per thread

__device  unsigned Generate (unsigned *s)
{

ta = s[ wId*K+Qa[wOff] ] << Za;

tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];

x = ta © tb;

s[threadldx.x] = x;

return x;

« Hold state in shared memory
— One word per thread

» Define a set of per-warp constants

— Permutations of warp indices

— One shared shift

— One per-thread shift

— These must be chosen carefully!

* The ones in the code are not valid

* Four basic steps

— Read and shift word from state

— Read and shift different word

— Exclusive-or them together

— Write back new state



const unsigned K=4; // Warp size
#define (wId threadIdx.x / K)
#define (wOff threadIdx.x % K)

const unsigned Qal[K] = {2, 0, 3, 1};
const unsigned Qb [K] {1, 3, 0, 21%};
const unsigned Za
const unsigned Zb[K]

3;

{1, 2, 1, 3};

// RNG state, one word per thread
__shared  unsigned s[];

// Generate new number per thread

__device  unsigned Generate (unsigned *s)

{
ta = s[ wId*K+Qa[wOff] ] << Za;

tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];

x = ta © tb;
s[threadIldx.x] = x;
return x;

Shared Memory

ta = S’2<<Za0

ta = S1<<Za3

Warp Registers




const unsigned K=4; // Warp size
#define (wId threadIdx.x / K)
#define (wOff threadIdx.x % K)

const unsigned Qal[K] = {2, 0, 3, 1};
const unsigned Qb [K] {1, 3, 0, 21%};
const unsigned Za
const unsigned Zb[K]

3;

{1, 2, 1, 3};

// RNG state, one word per thread
__shared  unsigned s[];

// Generate new number per thread
__device  unsigned Generate (unsigned *s)
{

ta = s[ wId*K+Qa[wOff] ] << Za;

tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];

x = ta © tb;

s[threadIldx.x] = x;

return x;

Shared Memory
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Warp Registers




const unsigned K=4;

// Warp size

#define (wId threadIdx.x / K)
#define (wOff threadIdx.x % K)

const unsigned Qal[K] = {2, 0, 3, 1};
const unsigned Qb[K] = {1, 3, 0, 2};
const unsigned Za = 3;

const unsigned Zb[K] = {1, 2, 1, 3};

// RNG state, one word per thread
__shared  unsigned s[];

// Generate new number per thread
__device  unsigned Generate (unsigned *s)
{

ta s wId*K+Qa[wOff] ] << Za;

tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];

x = ta * tb;

s[threadIldx.x] = x;

return x;

Shared Memory
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Warp Registers




const unsigned K=4; // Warp size
#define (wId threadIdx.x / K)
#define (wOff threadIdx.x % K)

const unsigned Qal[K] = {2, 0, 3, 1};
const unsigned Qb [K] {1, 3, 0, 21%};
const unsigned Za
const unsigned Zb[K]

3;

{1, 2, 1, 3};

// RNG state, one word per thread
__shared  unsigned s[];

// Generate new number per thread

__device  unsigned Generate (unsigned *s)

{
ta = s[ wId*K+Qa[wOff] ] << Za;

tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];

x = ta © tb;
s[threadIdx.x] = x;
return x;

Shared Memory

H ’
S, S,

Warp Registers




Features of warp RNGs

Very efficient: ~ four instructions per random number
Long period: warp size of 32 -> period of 21024

Managing and seeding parallel RNGs is fast and safe
— Random initialisation is safe as period is so large
— Skip within stream is quite cheap: ~3000 instructions per skip
— Use different constants for each warp: different RNG per warp
« Can find thousands of valid RNGs easily via binary linear algebra
« WARNING: you cannot use arbitrary constants: it won’t work
Statistical quality is excellent
— Four instruction version has correlation problems
— Very cheap (two instructions) tempering fixes them
— Higher empirical quality than the Mersenne Twister



Comparison with other RNGs

RNG Period | Empirical Quality - Testu01t! | GWord/

Small Medium Big second

Adderl?] 141.28
QuickAndDirty!3] 43.84
Park-Millerts! 10.67
MersenneTwister | 219937 Pass Passl‘ Passl‘ 5.85
KISS 2123 Pass Pass Pass 0.99

1 : TestUO1 offers three levels of “crush” tests: small is quite weak, big is very stringent

2 . Adder is not really a random number generator, just a control for performance

3 : QuickAndDirty and Park-Miller are LCGs with modulus 232 and (2"'3?-1) respectively
4 : Mersenne Twister fails tests for linear complexity, but that is not a problem in most apps

http://www.doc.ic.ac.uk/~dt10/research/rngs-gpu-uniform.htmi



http://www.doc.ic.ac.uk/~dt10/research/rngs-gpu-uniform.html

Conclusion

 GPUs are rather good for Monte-Carlo simulations
— Random number generation (PRNG and/or QRNG) is fast

— Embarrassingly parallel nature works well with GPU
— Single-precision is usually good enough

* Need to pay some attention to the detalls

— Watch out for scalar algorithms: warp divergence hurts
— Inversion is trickier than it seems

— Statistical accumulators should use double-precision
— Keep things out of global memory (but: true of any application)

 If you have the time, think of new algorithms

— Advantage of CUDA is ability to use existing algorithms/code
— Potential advantage of GPUs is from new algorithms



