
Monte Carlo implementations

on GPUs

David B. Thomas

Imperial College

dt10@doc.ic.ac.uk

mailto:dt10@doc.ic.ac.uk

Who am I?
• Research fellow at Imperial

– Software Engineering and FPGA background

– Lead a small group looking at accelerated computational finance

• What do I have to do with GPUs or finance?

– Most of my work: tools and methods for FPGA-based finance

– Compare performance of FPGA, CPU, and now GPU

• Initial CPU solution: day or so

• Develop FPGA solution: couple of weeks or months

• GPU solutions (keep paper reviewers happy): couple of days

– Usually find FPGA and GPU about the same performance

• GPU: 10x developer productivity; FPGA 10x more power efficient

Who am I?
• Research fellow at Imperial

– Software Engineering and FPGA background

– Lead a small group looking at accelerated computational finance

• What do I have to do with GPUs or finance?

– Most of my work: tools and methods for FPGA-based finance

– Compare performance of FPGA, CPU, and now GPU

• Initial CPU solution: day or so

• Develop FPGA solution: couple of weeks or months

• GPU solutions (keep paper reviewers happy): couple of days

– Usually find FPGA and GPU about the same performance

• GPU: 10x developer productivity; FPGA 10x more power efficient

• NVidia guy: “Why are you still wasting time with FPGAs”?

– I’m an academic: want to look at the hard(-ish) unsolved problems

– GPUs are mainstream: anyone can do it (that’s why you are here)

Who are you?

• I have no idea – my guesses about you

– Interested in, or actively working in financial modelling

– Are a programmer in some sense (this is a hands on workshop)

– Know something about CUDA/GPUs, but are not an expert

• Apologies if you have no knowledge about CUDA or GPUs

• Sorry if you are a hard-core expert: if you are, why aren’t you talking?

– Wondering whether to use GPUs, or how to use them better

• My guesses about what you might want to hear

1. General experiences with GPU Monte-Carlo: random (ha-ha!) tips

2. Specific things to watch out for: performance and correctness

3. Hard-core optimisation: new uniform random number generator

• What you won’t hear

– Anything specific about pricing models or finance

– Not enough time; everyone does something different

What is a GPU?

• Means different things to different people

1. Something that was originally developed for use in graphics?

2. Something made by NVidia that runs CUDA?

3. A wide SIMD processor using threads to hide latency?

4. A hardware accelerator that supports OpenCL?

What is a GPU?

• Means different things to different people

1. Something that was originally developed for use in graphics?

2. Something made by NVidia that runs CUDA?

3. A wide SIMD processor using threads to hide latency?

4. A hardware accelerator that supports OpenCL?

• For the purposes of this talk: option 2

– CUDA is ahead of the competition in terms of tools

– Everyone else here will talk CUDA/NVidia

• In a couple of years time (hopefully): option 4

– NVidia deserve huge credit for developing and promoting CUDA

– But... you are the end-users: seek portability, don’t get locked in

• FPGA accelerators existed for 10 years: no portability, no market

– Encourage NVidia/AMD/Intel to compete on hardware

GPU: Central concepts

• CPUs devote very little silicon area to actual computation

– Most of the area is trying to make sequential code faster

– Cache: decrease latency, increase bandwidth

– Branch prediction/speculation: decrease the cost of branches

• GPUs devote as much area as possible to computation

– Stick as many floating-point units on as possible

– Get rid of the huge caches and super-scalar stuff

• Manage latency by building multi-threading in at low level

– GPU memory latency is similar to CPU: still have to deal with it

– Have thousands of active threads in one processor

– If one thread stalls on memory, schedule the next one

GPU: Threading

•Threads are grouped into warps

– Warp size is currently 32 threads

– Threads never change their warp

• Assigned to warps using threadIdx

__global__

void MyKernel(

unsigned *pMem

){

int wIdx=tIdx.x/32;

int wOff=tIdx.x-32*wIdx;

if(Condition()){

DoOneThing();

}else{

DoOtherThing();

}

int addr=

wIdx*32+((wOff+1)%32);

pMem[addr]=Something();

}

GPU: Threading

•Threads are grouped into warps

– Warp size is currently 32 threads

– Threads never change their warp

• Assigned to warps using threadIdx

•Warps are important for compute efficiency

– One thread branches -> warp branches

– Threads take different branches: divergence

– Ideally: all threads in warp take same branch

• No divergence, better performance

__global__

void MyKernel(

unsigned *pMem

){

int wIdx=tIdx.x/32;

int wOff=tIdx.x-32*wIdx;

if(Condition()){

DoOneThing();

}else{

DoOtherThing();

}

int addr=

wIdx*32+((wOff+1)%32);

pMem[addr]=Something();

}

GPU: Threading

•Threads are grouped into warps

– Warp size is currently 32 threads

– Threads never change their warp

• Assigned to warps using threadIdx

•Warps are important for compute efficiency

– One thread branches -> warp branches

– Threads take different branches: divergence

– Ideally: all threads in warp take same branch

• No divergence, better performance

•Warps are important for memory efficiency

– Determine global memory coalescing[1]

– Determine shared memory conflicts[1]

__global__

void MyKernel(

unsigned *pMem

){

int wIdx=tIdx.x/32;

int wOff=tIdx.x-32*wIdx;

if(Condition()){

DoOneThing();

}else{

DoOtherThing();

}

int addr=

wIdx*32+((wOff+1)%32);

pMem[addr]=Something();

}

[1] – Yeah, half-warps, whatever

GPU: Threading

•Threads are grouped into warps

– Warp size is currently 32 threads

– Threads never change their warp

• Assigned to warps using threadIdx

•Warps are important for compute efficiency

– One thread branches -> warp branches

– Threads take different branches: divergence

– Ideally: all threads in warp take same branch

• No divergence, better performance

•Warps are important for memory efficiency

– Determine global memory coalescing[1]

– Determine shared memory conflicts[1]

•Make sure you understand warps!

– More important than threads

– Read the user guide (twice)

__global__

void MyKernel(

unsigned *pMem

){

int wIdx=tIdx.x/32;

int wOff=tIdx.x-32*wIdx;

if(Condition()){

DoOneThing();

}else{

DoOtherThing();

}

int addr=

wIdx*32+((wOff+1)%32);

pMem[addr]=Something();

}

[1] – Yeah, half-warps, whatever

Example: Rejection Methods

• Warp divergence hurts performance

– Scalar code does not take into account

– CPU algorithms are often divergent

• Rejection: optimise for average case

– Generate cheap random candidate

• Simple transform of uniform RNG

– Check candidate with cheap test

– Otherwise use a slow alternative

• May be recursive

• e.g. Ziggurat method for uniform to Gaussian conversion

– Fast: one uniform RNG, one comparison, one multiply

– Slow: looping, exponentials, logs, more uniform RNGs

– Designed so that fast route is taken ~98% of time

– The Ziggurat algorithm is a work of art – superb for scalar CPUs

u=UnifRng();

x=Candidate(u);

if(Accept(x))

return x;

else

return Slow();

Example: Rejection Methods

• Economics of rejection break down with GPU style SIMD

– Threads execute in warps

– Each thread can take different path through code

– Time for warp is total time to cover paths of all threads

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

Thread 0 Thread 1 Thread 2 Thread 3

Example: Rejection Methods

• Economics of rejection break down with GPU style SIMD

– Threads execute in warps

– Each thread can take different path through code

– Time for warp is total time to cover paths of all threads

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

Thread 0 Thread 1 Thread 2 Thread 3

Example: Rejection Methods

• Economics of rejection break down with GPU style SIMD

– Threads execute in warps

– Each thread can take different path through code

– Time for warp is total time to cover paths of all threads

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

Thread 0 Thread 1 Thread 2 Thread 3

Example: Rejection Methods

• Economics of rejection break down with GPU style SIMD

– Threads execute in warps

– Each thread can take different path through code

– Time for warp is total time to cover paths of all threads

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

Thread 0 Thread 1 Thread 2 Thread 3

Example: Rejection Methods

• Economics of rejection break down with GPU style SIMD

– Threads execute in warps

– Each thread can take different path through code

– Time for warp is total time to cover paths of all threads

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

Thread 0 Thread 1 Thread 2 Thread 3

Example: Rejection Methods

• Economics of rejection break down with GPU style SIMD

– Threads execute in warps

– Each thread can take different path through code

– Time for warp is total time to cover paths of all threads

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

Thread 0 Thread 1 Thread 2 Thread 3

Example: Rejection Methods

• Economics of rejection break down with GPU style SIMD

– Threads execute in warps

– Each thread can take different path through code

– Time for warp is total time to cover paths of all threads

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

x=Candidate();

if(Accept(x))

return x;

else

return Slow();

Thread 0 Thread 1 Thread 2 Thread 3

Example: Rejection Methods

• Economics of rejection break down with GPU style SIMD

– Threads execute in warps

– Each thread can take different path through code

– Time for warp is total time to cover paths of all threads

• Rejection relies on low probability of slow path

– Entire thread group incurs cost of one slow thread

– Probability of each thread taking fast path is ~98%

– Probability of all 32 threads taking fast path is ~52%

– Expected execution time: tfast + 0.48 tslow

• Non-rejection algorithms are (usually) better in GPU

– Has built-in fast log/exp/sin: use Box-Muller method

– Rational approximations are your friend: very fast

The perils of function approximation

• Simulations need functions with no closed form

– Standard examples: Gaussian CDF (Phi(x)) and ICDF (Phi-1(x))

• Obvious point[1]: read the documentation, see if it exists

– CUDA already includes the error function as intrinsics

• erff, erfcf : p = Phi(x) = erfc[x / -sqrt(2)] / 2

• erfinvf, erfcinvf : x = Phi-1(p) = erfcinf[2 p] * -sqrt(2)

– If you’re off the critical path, intrinsics are good enough

• Aside: you would think they would be super fast, but they aren’t

• Lets assume we are doing CDF inversion

– e.g. we are using Quasi-RNGs, or some other variance reduction

– Inversion: take a uniform 32-bit number u, turn it into Gaussian x

– Obvious: x = Phi-1(u * 2-32))

[1] – Yup, I didn’t read the documentation, and wasted time doing my own.

CDF Inversion: simple

__device__

float NormalCdfInv(

unsigned u

){

const float S1=pow(2,-32);

const float S2=-sqrt(2);

// [0..232) -> [0,1)
float p=u*S1;

// Phi(x) = -sqrt(2)*erfcinv(2*p)
return S2*erfcinv(2*p);

}

I apologise if this is obvious. Not everyone knows about this stuff.

CDF Inversion: simple, but deceptive

• First problem: lower bound

– NormalCdfInv(0) = - infinity __device__

float NormalCdfInv(

unsigned u

){

const float S1=pow(2,-32);

const float S2=-sqrt(2);

// [0..232) -> [0,1)
float p=u*S1;

// Phi(x) = -sqrt(2)*erfcinv(2*p)
return S2*erfcinv(2*p);

}

I apologise if this is obvious. Not everyone knows about this stuff.

CDF Inversion: simple, but deceptive

• First problem: lower bound

– NormalCdfInv(0) = - infinity

• Simple solution: nudge away from 0

– Add 2^-33 during integer->float conv.

__device__

float NormalCdfInv(

unsigned u

){

const float S1=pow(2,-32);

const float S2=-sqrt(2);

const float S3=pow(2,-33);

// [0..232) -> (0,1)
float p=u*S1 + S3;

// Phi(x) = -sqrt(2)*erfcinv(2*p)
return S2*erfcinv(2*p);

}

Sorry, this is floating-point 101, but not everyone knows about it. For instance, browse the CUDA SDK samples...

CDF Inversion: simple, but deceptive

• First problem: lower bound

– NormalCdfInv(0) = - infinity

• Simple solution: nudge away from 0

– Add 2^-33 during integer->float conv.

• Next problem: upper bound

– NormalCdfInv(232-1) = infinity

– Why?

• p = u * 2-32 + 2-33

• p = (2^32-1) * 2-32 + 2-33

• p = 0.99999999988358467

– But in single-precision p=1

• Time to talk about single-precision

__device__

float NormalCdfInv(

unsigned u

){

const float S1=pow(2,-32);

const float S2=-sqrt(2);

const float S3=pow(2,-33);

// [0..232) -> (0,1)
float p=u*S1 + S3;

// Phi-1(x) = -sqrt(2)*erfcinv(2*p)
return S2*erfcinv(2*p);

}

Sorry, this is floating-point 101, but not everyone knows about it. For instance, browse the CUDA SDK samples...

An aside: GPUs and single-precision

• Lets be clear: single-precision is not some kind of flaw

– It doesn’t make anything impossible

– It doesn’t mean your answers will automatically be inaccurate

• However, it requires the programmer to think

– Need a basic understanding of floating-point arithmetic

– Must understand how numbers are being manipulated

• How much do you care about performance vs. effort?

– Use double-precision: lower effort, but lower performance

– Legitimate choice – you don’t have to use single precision

• Double-precision will get faster with newer hardware

– Will it ever be as fast as single-precision? (Maybe it already is?)

– Even so: still a performance hit from memory - twice the size

Integer to floating-point

• Fixed-point (integer) and floating-point are for different jobs

– Floating-point: accuracy relative to magnitude, over infinite[1] range

– Fixed-point: accuracy independent of magnitude, over finite range

[1] : infinite-ish – there are obviously exponent limits

0.5 0.750.25

Floating-point

Integer

(fixed-point)

0.5 0.75 1-2-30.250

1

1

0

Integer to

Floating-point

output grid

Integer to floating-point

• Fixed-point (integer) and floating-point are for different jobs

– Floating-point: accuracy relative to magnitude, over infinite[1] range

– Fixed-point: accuracy independent of magnitude, over finite range

[1] : infinite-ish – there are obviously exponent limits

0.5 0.750.25

Floating-point

Integer

(fixed-point)

0.5 0.75 1-2-30.250

1

1

0

Integer to

Floating-point

output grid

Integer to floating-point

• Fixed-point (integer) and floating-point are for different jobs

– Floating-point: accuracy relative to magnitude, over infinite[1] range

– Fixed-point: accuracy independent of magnitude, over finite range

[1] : infinite-ish – there are obviously exponent limits

0.5 0.750.25

Floating-point

Integer

(fixed-point)

0.5 0.75 1-2-30.250

1

1

0

Integer to

Floating-point

output grid

Integer to floating-point

• Fixed-point (integer) and floating-point are for different jobs

– Floating-point: accuracy relative to magnitude, over infinite[1] range

– Fixed-point: accuracy independent of magnitude, over finite range

[1] : infinite-ish – there are obviously exponent limits

0.5 0.750.25

Floating-point

Integer

(fixed-point)

0.5 0.75 1-2-30.250

1

1

0

Integer to

Floating-point

output grid

Back to Inversion

-6.4

-6.3

-6.2

-6.1

-6

-5.9

-5.8

-5.7

-5.6

-5.5

-5.4

0.E+00 5.E-09 1.E-08 2.E-08 2.E-08 3.E-08 3.E-08 4.E-08 4.E-08

Lower Tail

Upper Tail (Reflected)

• So the lower (negative) tail is fine, but the upper (positive) tail is not

– Largest uniform inputs result in infinity – with probability about 2-24 !

• Even if we solve the infinities, upper tail is ruined

– Positive half of distribution is discretised into only 224 values

• This will mess up long-running simulations

– Distribution is not symmetric – mean will not be zero

– Higher moments are all slightly disturbed

– Effects of low-discrepancy sequence reduced in upper half

CDF Inversion: a reasonable solution

• Check whether p > 0.5

– Do it before conversion to floating-point

__device__

float NormalCdfInv(

unsigned u

){

const float S1=pow(2,-32);

const float S2=-sqrt(2);

const float S3=pow(2,-33);

// [0..232) -> (0,1)
float s = S2;

if(u>=0x80000000){

u=0xFFFFFFFF – u;

s = -S2;

}

float p=u*S1 + S3;

return s*erfcinv(2*p);

}

CDF Inversion: a reasonable solution

• Check whether p > 0.5

– Do it before conversion to floating-point

• If p>0.5 then reflect into lower tail

– Set p = 1-p (still in integer form)

– Record the saved sign for later

__device__

float NormalCdfInv(

unsigned u

){

const float S1=pow(2,-32);

const float S2=-sqrt(2);

const float S3=pow(2,-33);

// [0..232) -> (0,1)
float s = S2;

if(u>=0x80000000){

u=0xFFFFFFFF – u;

s = -S2;

}

float p=u*S1 + S3;

return s*erfcinv(2*p);

}

CDF Inversion: a reasonable solution

• Check whether p > 0.5

– Do it before conversion to floating-point

• If p>0.5 then reflect into lower tail

– Set p = 1-p (still in integer form)

– Record the saved sign for later

• Keep original nudging solution

– Still works fine from both ends

• Restore the sign in the final step

– We had to do a multiply here anyway

__device__

float NormalCdfInv(

unsigned u

){

const float S1=pow(2,-32);

const float S2=-sqrt(2);

const float S3=pow(2,-33);

// [0..232) -> (0,1)
float s = S2;

if(u>=0x80000000){

u=0xFFFFFFFF – u;

s = -S2;

}

float p=u*S1 + S3;

return s*erfcinv(2*p);

}

CDF Inversion: a reasonable solution

• Performance impact is fairly small

– Branch can be handled with predication

– Majority of work is still in erfcinv

– 6.6 GInv/sec vs. 6.1 GInv/sec

• About 8% perf. loss: is it worth it?

– No infinities....

– Output distribution is symmetric

• Correct mean and odd moments

– Finest resolution concentrated in tails

• High variance regions: QRNG effective

• Even moments more accurate

• If you want the right answer...

__device__

float NormalCdfInv(

unsigned u

){

const float S1=pow(2,-32);

const float S2=-sqrt(2);

const float S3=pow(2,-33);

// [0..232) -> (0,1)
float s = S2;

if(u>=0x80000000){

u=0xFFFFFFFF – u;

s = -S2;

}

float p=u*S1 + S3;

return s*erfcinv(2*p);

}

Beware code in the wild

• Code for quasi-random simulation using inversion

– From an unnamed source of GPU example code

//

// Moro's Inverse Cumulative Normal Distribution function approximation

//

#ifndef DOUBLE_PRECISION

__device__ inline float MoroInvCNDgpu(float P){
const float a1 = 2.50662823884f;

const float a2 = -18.61500062529f;

const float a3 = 41.39119773534f;

float y = P - 0.5f;
if(fabsf(y) < 0.42f){

z = y * y;

z = y * (((a4*z+a3)*z+a2)*z+a1)/((((b4*z+b3)*z+b2)*z+b1)*z+1.0f);

}else{

if(y > 0)

z = __logf(-__logf(1.0f - P));

<snip>

When is single-precision not enough?

• Some situations do require double-precision

– Always possible to work around, but not worth the risk and effort

• Running sum over a stream of data

– Use double-precision when stream is more than ~100-1000

• Actual threshold is data-dependent: be safe rather than sorry

– Even though data is single-precision, sum in double-precision

– Possible exception: can use a Kahan accumulator (but test well!)

• Statistical accumulators: mean and variance

– Always calculate means and variance in double-precision

– Even if n is small now, someone, eventually will say “use 32n”

• Don’t be seduced by online/updating methods

– They can be quite useful – in double-precision

– They don’t really help in single-precision

Single vs. Double: Mean

10

15

20

25

30

35

40

45

50

55

4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sample Count (log2)

A
c
c
u

ra
c
y
 (

B
it
s
)

Textbook[Double] Textbook[Single]

Updating[Double] Updating[Single]

Single vs Double: Variance

5

10

15

20

25

30

35

40

45

50

55

4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sample Count (log2)

A
c
c
u

ra
c
y
 (

B
it
s
)

Textbook[Double] Textbook[Single]

Updating[Double] Updating[Single]

General comments on floating-point

• None of these representation/precision issues are new

– Occur in high-performance computing all the time

– Lots of literature out there on safe single-precision

• “What Every Computer Scientist Should Know About

Floating-Point Arithmetic”, David Goldberg

• Think laterally: e.g. don’t forget the integers

– Convert to 32-bit fixed-point (float->uniform + multiply)

– Sum in 64-bit integer (two instructions: Cheap!)

– Can add 232 samples exactly, with no overflow

• GPUs can let you do a huge number of simulations

– Easy to lose track of the magnitude of the result set

– 232 is not a large number of simulations; 240 is not uncommon

– Play safe: double-precision for statistical accumulators

Memory

• Two types of memory: shared and global

• Shared memory: small, but fast

– Can almost treat as registers, with added ability to index

• Global memory: large, but slow

– Can’t be overstated how slow (comparatively) it is

– Minimise global memory traffic wherever possible

• Other types of memory are facades over global memory

• Constant memory: caches small part of global memory

– Doesn’t use global memory bandwidth once it is primed

• Texture memory: caches larger part of global memory

– Cache misses cause global memory traffic

– Watch out!

Memory in MC: the buffer anti-pattern

• Beware spurious memory buffers

– Strange anti-pattern that occurs

– I will generate all the uniforms

– Then transform all the gaussians

– Then construct all the paths

• Not sure why it occurs

– Mental boundaries as buffers?

– Make testing easier?

• Usually bad for performance

– Buffers must go in global memory

• In many apps. it can’t be avoided

– But often it can

void MySimulation()

{

__global__

unsigned uBuff[n*k],gBuff[n*k],...;

GenUniform(n,k,uBuff);

__syncthreads();

UnifToGaussian(n,k,uBuff,gBuff);

__syncthreads();

ConstructPath(n,k,gBuff,pBuff);

__syncthreads();

CalcPayoff(n,k,pBuff);

__syncthreads();

}

Memory in MC: reduce and re-use
void MySimulation()

{

__shared__ int buff[k];

for(int i=0;i<n;i++){

GenUniform(k, buff);

__syncthreads();

UnifToGaussian(k,buff);

__syncthreads();

ConstructPath(k,buff);

__syncthreads();

CalcPayoff(k,buff);

__syncthreads();

}

}

void MySimulation()

{

__global__

unsigned uBuff[n*k],gBuff[n*k],...;

GenUniform(n,k,uBuff);

__syncthreads();

UnifToGaussian(n,k,uBuff,gBuff);

__syncthreads();

ConstructPath(n,k,gBuff,pBuff);

__syncthreads();

CalcPayoff(n,k,pBuff);

__syncthreads();

}

If possible: make a buffer big enough for just one task and operate in-place

Optimisation is highly non-linear

• Small changes produce huge performance swings...

➢ Changing the number of threads per block

➢ Altering the order of independent statements

➢ Supposedly redundant __syncthread() calls

• General practises apply for Monte Carlo

– Use large grid sizes: larger than you might expect

– Allocate arrays to physical memory very carefully

– Keep out of global memory in inner loops (and outer loops)

• Prefer computation to global memory

– Keep threads in a branch together

• Prefer more complex algorithms with no branches

• Watch out for statistical branching

The compiler+GPU is a black box

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

16 48 80 112 144 176

Number of blocks in grid

T
im

e
 R

e
la

ti
v
e
 t

o
 S

in
g

le

P
ro

c
e
s
s
o

r

0

0.5

1

1.5

2

2.5

3

A
c
tu

a
l
T

im
e

Predicted

Actual

gridSize=30
gridSize=32

gridSize=64

Uniform Random Number Generation

• Goal: generate stream of numbers that “looks random”

• Generated by deterministic mechanism (Pseudo-Random)

– Must use only standard CPU instructions (unlike True-RNG)

– Can start two RNGs from same seed and get same stream

• Long period: deterministic generators must repeat

– Rule of thumb: if we use n samples, must have period >> n2

– In practise: would prefer period of at least 2128

• Statistically random: high entropy, “random looking”

– Check using test batteries: look for local correlations and biases

– Theoretical tests: prove properties of entire sequence

Basics of RNGs

• State-space: each RNG has a finite set of states s

– Given n bits in the state, maximum period is 2n

– Period of 2128 -> must have at least 4 words in state

• Transition function: moves generator from state to state

– f : s -> s

• Output function: convert current state into output sample

– g : s -> [0..232) or g : s -> [0,1)

• Choose an initial seed s0 \in s

– si+1=f(si)

– xi = g(si)

• Period: smallest p such that for all i : xi+p=xi

Existing RNGS

• Lots of existing software generators

– Linear Congruential

– Multiply Recursive

– XorShift

– Lagged Fibonacci

– Mersenne Twister

• We can still use these existing generators in a GPU

– Useful for checking results against CPU

• But! Why not derive new generators for GPU

– GPU has interesting features: lets use them

– CPU and GPU costs are different: old algorithms difficult to use

Example: Mersenne Twister

unsigned MT19937(unsigned &i, unsigned *s)

{

 t0 = s[i%N]; // can be cached in register

 t1 = s[(i+1)%N];

 t2 = s[(i+M)%N];

 tmp =someShiftsAndXors(t0,t1,t2);

 s[i%n] = tmp;

 i++;

 return moreShiftsAndXors(tmp);

}

624 words of state

Shifts

and xors

Random Sample

• Well respected generator, widely used

– Excellent quality: good theoretical and empirical quality

– Very long period: 219937

– Efficient in software

• Requires a state of 624 words organised as circular buffer

– Two reads and one write per cycle

Basic approach: one RNG per thread

Global Memory

R
N

G
 A

.0

Crossbar

Processor A
R

e
g

is
te

rs

A
L

U
 0

A
L

U
 1

A
L

U
 2

A
L

U
 3

Shared

Memory
R

N
G

 A
.1

R
N

G
 A

.2

R
N

G
 A

.3

Processor B

R
e

g
is

te
rs

A
L

U
 0

A
L

U
 1

A
L

U
 2

A
L

U
 3

Shared

Memory

R
N

G
 B

.0

R
N

G
 B

.1

R
N

G
 B

.2

R
N

G
 B

.3

Proc. C Proc. D

The memory bottleneck

• Each thread does two reads and one write per sample

– 12 bytes of traffic to global memory per sample

– Total bandwidth is about 18GB/s on C1060

– Maximum generation rate: ~1.5 GSamples/s

• Might seem like a an acceptable rate

– RNG is driving simulation: can use up memory latency cycles

– What if simulation needs to use global memory as well?

• More sophisticated approaches are possible

– Place RNG states in shared memory in clever ways

– Code gets very complicated, and RNG API more complex

• We want a function that looks like rand()

• But... why not try something new?

The memory bottleneck

Global Memory

R
N

G
 A

.0

Crossbar

Processor A
R

e
g

is
te

rs

A
L

U
 0

A
L

U
 1

A
L

U
 2

A
L

U
 3

Shared

Memory
R

N
G

 A
.1

R
N

G
 A

.2

R
N

G
 A

.3

Processor B

R
e

g
is

te
rs

A
L

U
 0

A
L

U
 1

A
L

U
 2

A
L

U
 3

Shared

Memory

R
N

G
 B

.0

R
N

G
 B

.1

R
N

G
 B

.2

R
N

G
 B

.3

Proc. C Proc. D

A
p

p
 D

a
ta

A
p

p
 D

a
ta

A
p

p
 D

a
ta

Designing from scratch for a GPU

• Where can we store RNG state on a GPU

– Global memory: large, very slow

– Shared memory: small, fast

– Registers: small, fast, can’t be indexed

• Could store state in shared memory?

– But would need four or more words per thread... too expensive

• Could store state in registers?

– Around four registers per thread is ok, but only allows period 2128

– RNG generator function must be complex (and slow) for quality

• One solution: period 2128 generator using registers

– e.g. Marsaglia’s KISS generator: excellent quality, but slow

Designing from scratch for a GPU

• Ok, what else does the GPU have that we can use?

– Automatically synchronised fine-grain warp-level parallelism

– Automatically synchronised warp-level access to shared memory

void rotateBlock(float *mem)

float tmp=s[(tId+1)%bDim];

__syncthreads();

s[tId]=tmp;

__syncthreads();

}

void rotateWarp(float *mem)

tmp=s[32*wIdx+((wOff+1)%32)];

s[tIdx]=tmp;

}

tId=threadIdx.x, bDim=blockDim.x wIdx=tId/32, wOff=tId%32

Warp Generators

• Each warp works on a shared RNG

– All threads execute transition step in parallel

– Each thread receives a new random number

• RNG state storage is spread across multiple threads

– Overhead per thread is low, but can still get long periods

• Communicate via shared memory

– Threads within warp can operate without synchronisation

– Accesses are fast as long as we observe the rules

• Fine-grain parallelism increases quality

– Relatively simple per-thread operation

– Complex transformation to overall state

const unsigned K=4; // Warp size

#define (wId threadIdx.x / K)

#define (wOff threadIdx.x % K)

const unsigned Qa[K] = {2, 0, 3, 1};

const unsigned Qb[K] = {1, 3, 0, 2};

const unsigned Za = 3;

const unsigned Zb[K] = {1, 2, 1, 3};

// RNG state, one word per thread

__shared__ unsigned s[];

// Generate new number per thread

__device__ unsigned Generate(unsigned *s)

{

 ta = s[wId*K+Qa[wOff]] << Za;

 tb = s[wId*K+Qb[wOff]] >> Zb[wOff];

 x = ta ^ tb;

 s[threadIdx.x] = x;

 return x;

}

• Hold state in shared memory

– One word per thread

• Define a set of per-warp constants

– Permutations of warp indices

– One shared shift

– One per-thread shift

– These must be chosen carefully!

• The ones in the code are not valid

• Four basic steps

– Read and shift word from state

– Read and shift different word

– Exclusive-or them together

– Write back new state

const unsigned K=4; // Warp size

#define (wId threadIdx.x / K)

#define (wOff threadIdx.x % K)

const unsigned Qa[K] = {2, 0, 3, 1};

const unsigned Qb[K] = {1, 3, 0, 2};

const unsigned Za = 3;

const unsigned Zb[K] = {1, 2, 1, 3};

// RNG state, one word per thread

__shared__ unsigned s[];

// Generate new number per thread

__device__ unsigned Generate(unsigned *s)

{

 ta = s[wId*K+Qa[wOff]] << Za;

 tb = s[wId*K+Qb[wOff]] >> Zb[wOff];

 x = ta ^ tb;

 s[threadIdx.x] = x;

 return x;

}

Warp Registers

Shared Memory

s
0

s
1

s
2

s
3

- -

t
a

= s
2
<<Z

a0
t
a
= s

0
<<Z

a1
t
a
= s

3
<<Z

a2
t
a
= s

1
<<Z

a3

- - - -

- - - -

- -

const unsigned K=4; // Warp size

#define (wId threadIdx.x / K)

#define (wOff threadIdx.x % K)

const unsigned Qa[K] = {2, 0, 3, 1};

const unsigned Qb[K] = {1, 3, 0, 2};

const unsigned Za = 3;

const unsigned Zb[K] = {1, 2, 1, 3};

// RNG state, one word per thread

__shared__ unsigned s[];

// Generate new number per thread

__device__ unsigned Generate(unsigned *s)

{

 ta = s[wId*K+Qa[wOff]] << Za;

 tb = s[wId*K+Qb[wOff]] >> Zb[wOff];

 x = ta ^ tb;

 s[threadIdx.x] = x;

 return x;

}

Warp Registers

Shared Memory

s
0

s
1

s
2

s
3

- -

t
b
 = s

1
>>Z

b0
t
b

= s
3
>>Z

b1
t
b

= s
0
>>Z

b2
t
b

= s
2
>>Z

b3

t
a

= s
2
<<Z

a0
t
a

= s
0
<<Z

a1
t
a

= s
3
<<Z

a2
t
a

= s
1
<<Z

a3

- - - -

- -

const unsigned K=4; // Warp size

#define (wId threadIdx.x / K)

#define (wOff threadIdx.x % K)

const unsigned Qa[K] = {2, 0, 3, 1};

const unsigned Qb[K] = {1, 3, 0, 2};

const unsigned Za = 3;

const unsigned Zb[K] = {1, 2, 1, 3};

// RNG state, one word per thread

__shared__ unsigned s[];

// Generate new number per thread

__device__ unsigned Generate(unsigned *s)

{

 ta = s[wId*K+Qa[wOff]] << Za;

 tb = s[wId*K+Qb[wOff]] >> Zb[wOff];

 x = ta ^ tb;

 s[threadIdx.x] = x;

 return x;

}

Warp Registers

Shared Memory

s
0

s
1

s
2

s
3

- -

t
b
 = s

1
>>Z

b0
t
b

= s
3
>>Z

b1
t
b

= s
0
>>Z

b2
t
b

= s
2
>>Z

b3

t
a

= s
2
<<Z

a0
t
a

= s
0
<<Z

a1
t
a

= s
3
<<Z

a2
t
a

= s
1
<<Z

a3

x = t
a
 ^ t

b
x = t

a
 ^ t

b
x = t

a
 ^ t

b
x = t

a
 ^ t

b

- -

const unsigned K=4; // Warp size

#define (wId threadIdx.x / K)

#define (wOff threadIdx.x % K)

const unsigned Qa[K] = {2, 0, 3, 1};

const unsigned Qb[K] = {1, 3, 0, 2};

const unsigned Za = 3;

const unsigned Zb[K] = {1, 2, 1, 3};

// RNG state, one word per thread

__shared__ unsigned s[];

// Generate new number per thread

__device__ unsigned Generate(unsigned *s)

{

 ta = s[wId*K+Qa[wOff]] << Za;

 tb = s[wId*K+Qb[wOff]] >> Zb[wOff];

 x = ta ^ tb;

 s[threadIdx.x] = x;

 return x;

}

Warp Registers

Shared Memory

s’
0

s’
1

s’
2

s’
3

- -

- - - -

- - - -

x = t
a
 ^ t

b
x = t

a
 ^ t

b
x = t

a
 ^ t

b
x = t

a
 ^ t

b

- -

Features of warp RNGs

• Very efficient: ~ four instructions per random number

• Long period: warp size of 32 -> period of 21024

• Managing and seeding parallel RNGs is fast and safe

– Random initialisation is safe as period is so large

– Skip within stream is quite cheap: ~3000 instructions per skip

– Use different constants for each warp: different RNG per warp

• Can find thousands of valid RNGs easily via binary linear algebra

• WARNING: you cannot use arbitrary constants: it won’t work

• Statistical quality is excellent

– Four instruction version has correlation problems

– Very cheap (two instructions) tempering fixes them

– Higher empirical quality than the Mersenne Twister

Comparison with other RNGs

RNG Period Empirical Quality - TestU01[1] GWord/

second
Small Medium Big

Adder[2] 232 Fail Fail Fail 141.28

QuickAndDirty[3] 232 Fail Fail Fail 43.84

Warp RNG 21024 Pass Pass Pass 37.58

Park-Miller[3] 232 Fail Fail Fail 10.67

MersenneTwister 219937 Pass Pass[4] Pass[4] 5.85

KISS 2123 Pass Pass Pass 0.99

1 : TestU01 offers three levels of “crush” tests: small is quite weak, big is very stringent

2 : Adder is not really a random number generator, just a control for performance

3 : QuickAndDirty and Park-Miller are LCGs with modulus 232 and (2^32-1) respectively

4 : Mersenne Twister fails tests for linear complexity, but that is not a problem in most apps

http://www.doc.ic.ac.uk/~dt10/research/rngs-gpu-uniform.html

http://www.doc.ic.ac.uk/~dt10/research/rngs-gpu-uniform.html

Conclusion

• GPUs are rather good for Monte-Carlo simulations

– Random number generation (PRNG and/or QRNG) is fast

– Embarrassingly parallel nature works well with GPU

– Single-precision is usually good enough

• Need to pay some attention to the details

– Watch out for scalar algorithms: warp divergence hurts

– Inversion is trickier than it seems

– Statistical accumulators should use double-precision

– Keep things out of global memory (but: true of any application)

• If you have the time, think of new algorithms

– Advantage of CUDA is ability to use existing algorithms/code

– Potential advantage of GPUs is from new algorithms

