Monte Carlo implementations on GPUs

David B. Thomas Imperial College dt10@doc.ic.ac.uk

Who am I?

- Research fellow at Imperial
 - Software Engineering and FPGA background
 - Lead a small group looking at accelerated computational finance
- What do I have to do with GPUs or finance?
 - Most of my work: tools and methods for FPGA-based finance
 - Compare performance of FPGA, CPU, and now GPU
 - Initial CPU solution: day or so
 - Develop FPGA solution: couple of weeks or months
 - GPU solutions (keep paper reviewers happy): couple of days
 - Usually find FPGA and GPU about the same performance
 - GPU: 10x developer productivity; FPGA 10x more power efficient

Who am I?

- Research fellow at Imperial
 - Software Engineering and FPGA background
 - Lead a small group looking at accelerated computational finance
- What do I have to do with GPUs or finance?
 - Most of my work: tools and methods for FPGA-based finance
 - Compare performance of FPGA, CPU, and now GPU
 - Initial CPU solution: day or so
 - Develop FPGA solution: couple of weeks or months
 - GPU solutions (keep paper reviewers happy): couple of days
 - Usually find FPGA and GPU about the same performance
 - GPU: 10x developer productivity; FPGA 10x more power efficient
- NVidia guy: "Why are you still wasting time with FPGAs"?
 - I'm an academic: want to look at the hard(-ish) unsolved problems
 - GPUs are mainstream: anyone can do it (that's why you are here)

Who are you?

- I have no idea my guesses about you
 - Interested in, or actively working in financial modelling
 - Are a programmer in some sense (this is a hands on workshop)
 - Know something about CUDA/GPUs, but are not an expert
 - Apologies if you have *no* knowledge about CUDA or GPUs
 - Sorry if you are a hard-core expert: if you are, why aren't you talking?
 - Wondering whether to use GPUs, or how to use them better
- My guesses about what you might want to hear
 - 1. General experiences with GPU Monte-Carlo: random (ha-ha!) tips
 - 2. Specific things to watch out for: performance and correctness
 - 3. Hard-core optimisation: new uniform random number generator
- What you won't hear
 - Anything specific about pricing models or finance
 - Not enough time; everyone does something different

What is a GPU?

- Means different things to different people
 - 1. Something that was originally developed for use in graphics?
 - 2. Something made by NVidia that runs CUDA?
 - 3. A wide SIMD processor using threads to hide latency?
 - 4. A hardware accelerator that supports OpenCL?

What is a GPU?

- Means different things to different people
 - 1. Something that was originally developed for use in graphics?
 - 2. Something made by NVidia that runs CUDA?
 - 3. A wide SIMD processor using threads to hide latency?
 - 4. A hardware accelerator that supports OpenCL?
- For the purposes of this talk: option 2
 - CUDA is ahead of the competition in terms of tools
 - Everyone else here will talk CUDA/NVidia
- In a couple of years time (hopefully): option 4
 - NVidia deserve huge credit for developing and promoting CUDA
 - But... you are the end-users: seek portability, don't get locked in
 - FPGA accelerators existed for 10 years: no portability, no market
 - Encourage NVidia/AMD/Intel to compete on hardware

GPU: Central concepts

- CPUs devote very little silicon area to actual computation
 - Most of the area is trying to make sequential code faster
 - Cache: decrease latency, increase bandwidth
 - Branch prediction/speculation: decrease the cost of branches
- GPUs devote as much area as possible to computation
 - Stick as many floating-point units on as possible
 - Get rid of the huge caches and super-scalar stuff
- Manage latency by building multi-threading in at low level
 - GPU memory latency is similar to CPU: still have to deal with it
 - Have thousands of active threads in one processor
 - If one thread stalls on memory, schedule the next one

- •Threads are grouped into warps
 - Warp size is currently 32 threads
 - Threads never change their warp
 - Assigned to warps using threadIdx

```
global
void MyKernel(
  unsigned *pMem
) {
  int wIdx=tIdx.x/32;
  int wOff=tIdx.x-32*wIdx;
  if(Condition()) {
    DoOneThing();
  }else{
    DoOtherThing();
  int addr=
         wIdx*32+((wOff+1)%32);
  pMem[addr]=Something();
}
```

- •Threads are grouped into warps
 - Warp size is currently 32 threads
 - Threads never change their warp
 - Assigned to warps using threadIdx
- •Warps are important for compute efficiency
 - One thread branches -> warp branches
 - Threads take different branches: divergence
 - Ideally: all threads in warp take same branch
 - No divergence, better performance

```
global
void MyKernel(
  unsigned *pMem
) {
  int wIdx=tIdx.x/32;
  int wOff=tIdx.x-32*wIdx;
  if(Condition()) {
    DoOneThing();
  }else{
    DoOtherThing();
  int addr=
         wIdx*32+((wOff+1)%32);
  pMem[addr]=Something();
}
```

- •Threads are grouped into warps
 - Warp size is currently 32 threads
 - Threads never change their warp
 - Assigned to warps using threadIdx
- •Warps are important for compute efficiency
 - One thread branches -> warp branches
 - Threads take different branches: divergence
 - Ideally: all threads in warp take same branch
 - No divergence, better performance
- •Warps are important for memory efficiency
 - Determine global memory coalescing^[1]
 - Determine shared memory conflicts^[1]

```
global
void MyKernel(
  unsigned *pMem
) {
  int wIdx=tIdx.x/32;
  int wOff=tIdx.x-32*wIdx;
  if (Condition()) {
    DoOneThing();
  }else{
    DoOtherThing();
  int addr=
         wIdx*32+((wOff+1)%32);
  pMem[addr]=Something();
}
```

- •Threads are grouped into warps
 - Warp size is currently 32 threads
 - Threads never change their warp
 - Assigned to warps using threadIdx
- •Warps are important for compute efficiency
 - One thread branches -> warp branches
 - Threads take different branches: divergence
 - Ideally: all threads in warp take same branch
 - No divergence, better performance
- •Warps are important for memory efficiency
 - Determine global memory coalescing^[1]
 - Determine shared memory conflicts^[1]
- •Make sure you understand warps!
 - More important than threads
 - Read the user guide (twice)

```
global
void MyKernel(
  unsigned *pMem
) {
  int wIdx=tIdx.x/32;
  int wOff=tIdx.x-32*wIdx;
  if (Condition()) {
    DoOneThing();
  }else{
    DoOtherThing();
  int addr=
         wIdx*32+((wOff+1)%32);
  pMem[addr]=Something();
}
```

- Warp divergence hurts performance
 - Scalar code does not take into account
 - CPU algorithms are often divergent
- Rejection: optimise for average case
 - Generate cheap random candidate
 - Simple transform of uniform RNG
 - Check candidate with cheap test
 - Otherwise use a slow alternative
 - May be recursive
- e.g. Ziggurat method for uniform to Gaussian conversion
 - Fast: one uniform RNG, one comparison, one multiply
 - Slow: looping, exponentials, logs, more uniform RNGs
 - Designed so that fast route is taken ~98% of time
 - The Ziggurat algorithm is a work of art superb for scalar CPUs

u=UnifRng();
x=Candidate(u);
if(Accept(x))
return x;
else
return Slow();

- Economics of rejection break down with GPU style SIMD
 - Threads execute in warps
 - Each thread can take different path through code
 - Time for warp is *total* time to cover paths of *all* threads

Thread 0	Thread 1	Thread 2	Thread 3
<pre>x=Candidate(); if(Accept(x)) return x;</pre>			
else return Slow();	else return Slow();	else return Slow();	else return Slow();

- Economics of rejection break down with GPU style SIMD
 - Threads execute in warps
 - Each thread can take different path through code
 - Time for warp is *total* time to cover paths of *all* threads

Thread 0	Thread 1	Thread 2	Thread 3
<pre>x=Candidate(); if(Accept(x)) return x;</pre>			
else return Slow();	else return Slow();	else return Slow();	else return Slow();

- Economics of rejection break down with GPU style SIMD
 - Threads execute in warps
 - Each thread can take different path through code
 - Time for warp is *total* time to cover paths of *all* threads

Thread 0	Thread 1	Thread 2	Thread 3
	<pre>x=Candidate(); if(Accept(x)) return x; else return Slow();</pre>	,	<pre>x=Candidate(); if(Accept(x)) return x; else return Slow();</pre>

- Economics of rejection break down with GPU style SIMD
 - Threads execute in warps
 - Each thread can take different path through code
 - Time for warp is *total* time to cover paths of *all* threads

Thread 0	Thread 1	Thread 2	Thread 3
<pre>x=Candidate(); if(Accept(x)) return x;</pre>	<pre>x=Candidate(); if(Accept(x)) return x;</pre>		<pre>x=Candidate(); if(Accept(x)) return x;</pre>
else return Slow();	else return Slow();	else return Slow();	else return Slow();

- Economics of rejection break down with GPU style SIMD
 - Threads execute in warps
 - Each thread can take different path through code
 - Time for warp is *total* time to cover paths of *all* threads

Thread 0	Thread 1	Thread 2	Thread 3
	<pre>x=Candidate(); if(Accept(x)) return x; else return Slow();</pre>	,	<pre>x=Candidate(); if(Accept(x)) return x; else return Slow();</pre>

- Economics of rejection break down with GPU style SIMD
 - Threads execute in warps
 - Each thread can take different path through code
 - Time for warp is *total* time to cover paths of *all* threads

Thread 0	Thread 1	Thread 2	Thread 3
<pre>x=Candidate();</pre>	<pre>x=Candidate();</pre>	x=Candidate();	x=Candidate();
if(Accept(x))	if(Accept(x))	if(Accept(x))	if(Accept(x))
return x;	return x;	return x;	return x;
else	else	else	else
<pre>return Slow();</pre>	<pre>return Slow();</pre>	<pre>return Slow();</pre>	<pre>return Slow();</pre>

- Economics of rejection break down with GPU style SIMD
 - Threads execute in warps
 - Each thread can take different path through code
 - Time for warp is *total* time to cover paths of *all* threads

Thread 0	Thread 1	Thread 2	Thread 3
<pre>x=Candidate(); if(Accept(x))</pre>	if(Accept(x))	if(Accept(x))	<pre>x=Candidate(); if(Accept(x))</pre>
<pre>return x; else return Slow();</pre>	<pre>return x; else return Slow();</pre>	<pre>return x; else return Slow();</pre>	<pre>return x; else return Slow();</pre>

- Economics of rejection break down with GPU style SIMD
 - Threads execute in warps
 - Each thread can take different path through code
 - Time for warp is *total* time to cover paths of *all* threads
- Rejection relies on low probability of slow path
 - Entire thread group incurs cost of one slow thread
 - Probability of each thread taking fast path is ~98%
 - Probability of *all* 32 threads taking fast path is ~52%
 - Expected execution time: t_{fast} + 0.48 t_{slow}
- Non-rejection algorithms are (usually) better in GPU
 - Has built-in fast log/exp/sin: use Box-Muller method
 - Rational approximations are your friend: very fast

The perils of function approximation

- Simulations need functions with no closed form
 - Standard examples: Gaussian CDF (Phi(x)) and ICDF (Phi⁻¹(x))
- Obvious point^[1]: read the documentation, see if it exists
 - CUDA already includes the error function as intrinsics
 - erff, erfcf : p = Phi(x) = erfc[x / -sqrt(2)] / 2
 - erfinvf, erfcinvf : x = Phi⁻¹(p) = erfcinf[2 p] * -sqrt(2)
 - If you're off the critical path, intrinsics are good enough
 - Aside: you would think they would be super fast, but they aren't
- Lets assume we are doing CDF inversion
 - e.g. we are using Quasi-RNGs, or some other variance reduction
 - Inversion: take a uniform 32-bit number u, turn it into Gaussian x
 - Obvious: $x = Phi^{-1}(u * 2^{-32})$)

CDF Inversion: simple

```
__device__
float NormalCdfInv(
    unsigned u
) {
    const float S1=pow(2,-32);
    const float S2=-sqrt(2);
    //[0..2<sup>32</sup>) -> [0,1)
    float p=u*S1;
    // Phi(x) = -sqrt(2)*erfcinv(2*p)
    return S2*erfcinv(2*p);
}
```

I apologise if this is obvious. Not everyone knows about this stuff.

CDF Inversion: simple, but deceptive

- First problem: lower bound
 - NormalCdfInv(0) = infinity

```
__device__
float NormalCdfInv(
    unsigned u
) {
    const float S1=pow(2,-32);
    const float S2=-sqrt(2);
    //[0..2<sup>32</sup>) -> [0,1)
    float p=u*S1;
    // Phi(x) = -sqrt(2)*erfcinv(2*p)
    return S2*erfcinv(2*p);
}
```

I apologise if this is obvious. Not everyone knows about this stuff.

CDF Inversion: simple, but deceptive

- First problem: lower bound
 - NormalCdfInv(0) = infinity
- Simple solution: nudge away from 0
 - Add 2^-33 during integer->float conv.

```
____device___
float NormalCdfInv(
    unsigned u
) {
    const float S1=pow(2,-32);
    const float S2=-sqrt(2);
    const float S3=pow(2,-33);
    //[0.2<sup>32</sup>) -> (0,1)
    float p=u*S1 + S3;
    // Phi(x) = -sqrt(2)*erfcinv(2*p)
    return S2*erfcinv(2*p);
}
```

CDF Inversion: simple, but deceptive

- First problem: lower bound
 - NormalCdfInv(0) = infinity
- Simple solution: nudge away from 0
 - Add 2^-33 during integer->float conv.
- Next problem: upper bound
 - NormalCdfInv $(2^{32}-1)$ = infinity
 - Why?
 - $p = u + 2^{-32} + 2^{-33}$
 - $p = (2^{32}-1) * 2^{-32} + 2^{-33}$
 - p = 0.9999999988358467
 - But in single-precision p=1
- Time to talk about single-precision

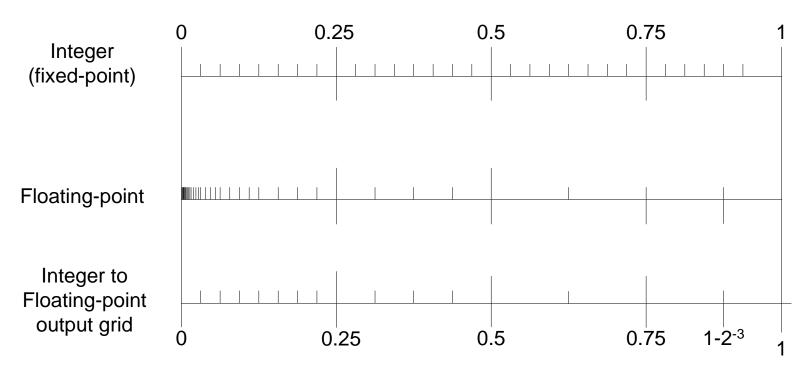
```
____device___
float NormalCdfInv(
    unsigned u
) {
    const float S1=pow(2,-32);
    const float S2=-sqrt(2);
    const float S3=pow(2,-33);
    //[0..2<sup>32</sup>) -> (0,1)
    float p=u*S1 + S3;
    // Phi<sup>-1</sup>(x) = -sqrt(2)*erfcinv(2*p)
    return S2*erfcinv(2*p);
}
```

Sorry, this is floating-point 101, but not everyone knows about it. For instance, browse the CUDA SDK samples...

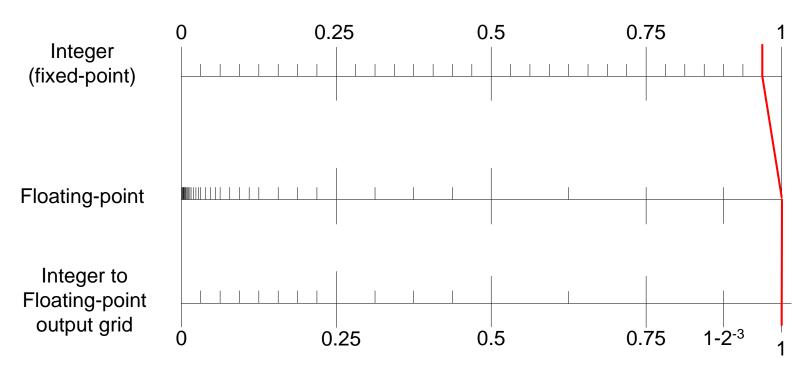
An aside: GPUs and single-precision

- Lets be clear: single-precision is not some kind of flaw
 - It doesn't make anything impossible
 - It doesn't mean your answers will automatically be inaccurate
- However, it requires the programmer to think
 - Need a basic understanding of floating-point arithmetic
 - Must understand how numbers are being manipulated
- How much do you care about performance vs. effort?
 - Use double-precision: lower effort, but lower performance
 - Legitimate choice you don't have to use single precision
- Double-precision will get faster with newer hardware
 - Will it ever be as fast as single-precision? (Maybe it already is?)
 - Even so: still a performance hit from memory twice the size

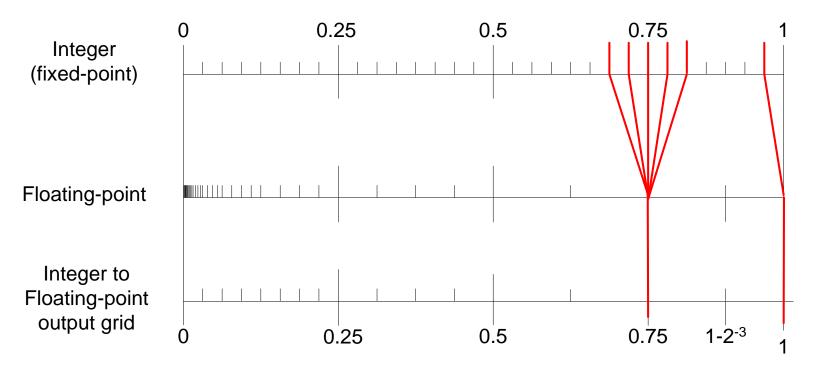
- Fixed-point (integer) and floating-point are for different jobs
 - Floating-point: accuracy relative to magnitude, over infinite^[1] range
 - Fixed-point: accuracy independent of magnitude, over finite range



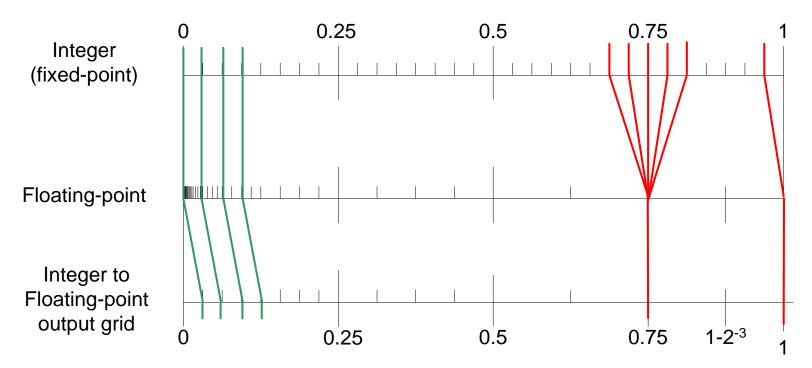
- Fixed-point (integer) and floating-point are for different jobs
 - Floating-point: accuracy relative to magnitude, over infinite^[1] range
 - Fixed-point: accuracy independent of magnitude, over finite range



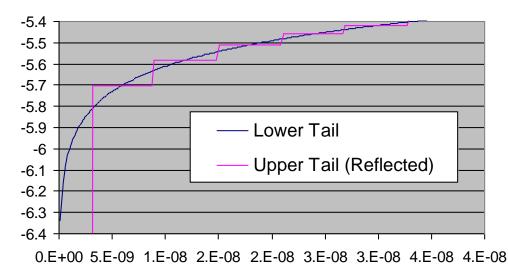
- Fixed-point (integer) and floating-point are for different jobs
 - Floating-point: accuracy relative to magnitude, over infinite^[1] range
 - Fixed-point: accuracy independent of magnitude, over finite range



- Fixed-point (integer) and floating-point are for different jobs
 - Floating-point: accuracy relative to magnitude, over infinite^[1] range
 - Fixed-point: accuracy independent of magnitude, over finite range



Back to Inversion



- So the lower (negative) tail is fine, but the upper (positive) tail is not
 - Largest uniform inputs result in infinity with probability about 2⁻²⁴ !
- Even if we solve the infinities, upper tail is ruined
 - Positive half of distribution is discretised into only 2²⁴ values
- This will mess up long-running simulations
 - Distribution is not symmetric mean will not be zero
 - Higher moments are all slightly disturbed
 - Effects of low-discrepancy sequence reduced in upper half

- Check whether p > 0.5
 - Do it *before* conversion to floating-point

```
device
float NormalCdfInv(
  unsigned u
) {
  const float S1=pow(2,-32);
  const float S2=-sqrt(2);
  const float S3=pow(2,-33);
  //[0..2^{32}) \rightarrow (0,1)
  float s = S2;
  if(u>=0x8000000){
    u=0xFFFFFFF - u;
    s = -S2;
  float p=u*S1 + S3;
  return s*erfcinv(2*p);
```

- Check whether p > 0.5
 - Do it before conversion to floating-point
- If p>0.5 then reflect into lower tail
 - Set p = 1-p (still in integer form)
 - Record the saved sign for later

```
device
float NormalCdfInv(
  unsigned u
) {
  const float S1=pow(2,-32);
  const float S2=-sqrt(2);
  const float S3=pow(2,-33);
  //[0..2^{32}) \rightarrow (0,1)
  float s = S2;
  if(u>=0x8000000){
    u=0xFFFFFFF - u;
    s = -S2;
  float p=u*S1 + S3;
  return s*erfcinv(2*p);
```

- Check whether p > 0.5
 - Do it before conversion to floating-point
- If p>0.5 then reflect into lower tail
 - Set p = 1-p (still in integer form)
 - Record the saved sign for later
- Keep original nudging solution
 - Still works fine from both ends
- Restore the sign in the final step
 - We had to do a multiply here anyway

```
device
float NormalCdfInv(
  unsigned u
) {
  const float S1=pow(2,-32);
  const float S2=-sqrt(2);
  const float S3=pow(2,-33);
  //[0..2^{32}) \rightarrow (0,1)
  float s = S2;
  if(u>=0x8000000){
    u=0xFFFFFFF - u;
    s = -S2;
  }
  float p=u*S1 + S3;
  return s*erfcinv(2*p);
```

- Performance impact is fairly small
 - Branch can be handled with predication
 - Majority of work is still in erfcinv
 - 6.6 Glnv/sec vs. 6.1 Glnv/sec
- About 8% perf. loss: is it worth it?
 - No infinities....
 - Output distribution is symmetric
 - Correct mean and odd moments
 - Finest resolution concentrated in tails
 - High variance regions: QRNG effective
 - Even moments more accurate
- If you want the right answer...

```
____device___
float NormalCdfInv(
    unsigned u
) {
    const float S1=pow(2,-32);
    const float S2=-sqrt(2);
    const float S3=pow(2,-33);
    //[0..2<sup>32</sup>) -> (0,1)
    float s = S2;
    if(u>=0x8000000) {
        u=0xFFFFFFFF - u;
        s = -S2;
    }
    float p=u*S1 + S3;
```

return s*erfcinv(2*p);

Beware code in the wild

- Code for quasi-random simulation using inversion
 - From an unnamed source of GPU example code

```
__device__ inline float MoroInvCNDgpu(float P){
    const float a1 = 2.50662823884f;
    const float a2 = -18.61500062529f;
    const float a3 = 41.39119773534f;
```

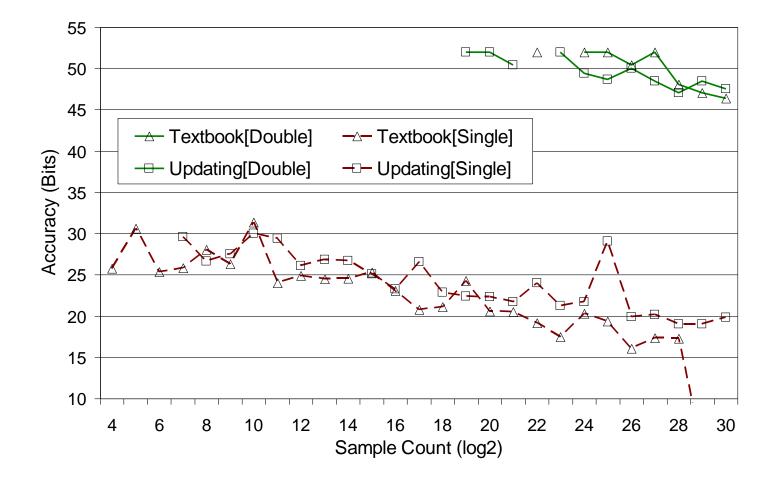
<snip>

```
float y = P - 0.5f;
if(fabsf(y) < 0.42f){
    z = y * y;
    z = y * (((a4*z+a3)*z+a2)*z+a1)/((((b4*z+b3)*z+b2)*z+b1)*z+1.0f);
}else{
    if(y > 0)
        z = logf(- logf(1.0f - P));
```

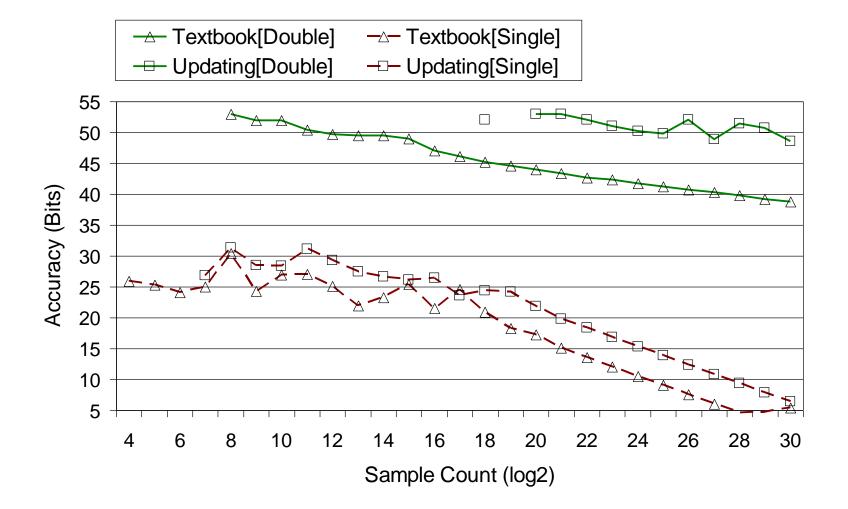
When is single-precision not enough?

- Some situations *do* require double-precision
 - Always possible to work around, but not worth the risk and effort
- Running sum over a stream of data
 - Use double-precision when stream is more than ~100-1000
 - Actual threshold is data-dependent: be safe rather than sorry
 - Even though data is single-precision, sum in double-precision
 - Possible exception: can use a Kahan accumulator (but test well!)
- Statistical accumulators: mean and variance
 - Always calculate means and variance in double-precision
 - Even if *n* is small now, someone, eventually will say "use 32*n*"
- Don't be seduced by online/updating methods
 - They can be quite useful in double-precision
 - They don't really help in single-precision

Single vs. Double: Mean



Single vs Double: Variance



General comments on floating-point

- None of these representation/precision issues are new
 - Occur in high-performance computing all the time
 - Lots of literature out there on safe single-precision
 - "What Every Computer Scientist Should Know About Floating-Point Arithmetic", David Goldberg
- Think laterally: e.g. don't forget the integers
 - Convert to 32-bit fixed-point (float->uniform + multiply)
 - Sum in 64-bit integer (two instructions: Cheap!)
 - Can add 2³² samples exactly, with no overflow
- GPUs can let you do a huge number of simulations
 - Easy to lose track of the magnitude of the result set
 - -2^{32} is not a large number of simulations; 2^{40} is not uncommon
 - Play safe: double-precision for statistical accumulators

Memory

- Two types of memory: shared and global
- Shared memory: small, but fast
 - Can almost treat as registers, with added ability to index
- Global memory: large, but slow
 - Can't be overstated how slow (comparatively) it is
 - Minimise global memory traffic wherever possible
- Other types of memory are facades over global memory
- Constant memory: caches small part of global memory
 - Doesn't use global memory bandwidth once it is primed
- Texture memory: caches larger part of global memory
 - Cache misses cause global memory traffic
 - Watch out!

Memory in MC: the buffer anti-pattern

- Beware spurious memory buffers
 - Strange anti-pattern that occurs
 - I will generate all the uniforms
 - Then transform **all** the gaussians
 - Then construct **all** the paths
- Not sure why it occurs
 - Mental boundaries as buffers?
 - Make testing easier?
- Usually bad for performance
 - Buffers must go in global memory
- In many apps. it can't be avoided
 - But often it can

```
void MySimulation()
```

```
__global___
unsigned uBuff[n*k],gBuff[n*k],...;
```

```
GenUniform(n,k,uBuff);
   syncthreads();
```

```
UnifToGaussian(n,k,uBuff,gBuff);
___syncthreads();
```

```
ConstructPath(n,k,gBuff,pBuff);
___syncthreads();
```

```
CalcPayoff(n,k,pBuff);
____syncthreads();
```

Memory in MC: reduce and re-use

{

```
void MySimulation()
```

{

```
__global___
unsigned uBuff[n*k],gBuff[n*k],...;
```

```
GenUniform(n,k,uBuff);
   syncthreads();
```

```
UnifToGaussian(n,k,uBuff,gBuff);
_____syncthreads();
```

```
ConstructPath(n,k,gBuff,pBuff);
   syncthreads();
```

```
CalcPayoff(n,k,pBuff);
```

```
_syncthreads();
```

```
void MySimulation()
```

```
__shared__ int buff[k];
```

```
for(int i=0;i<n;i++) {
  GenUniform(k, buff);
    syncthreads();</pre>
```

```
UnifToGaussian(k,buff);
_____syncthreads();
```

```
ConstructPath(k,buff);
__syncthreads();
```

```
CalcPayoff(k,buff);
```

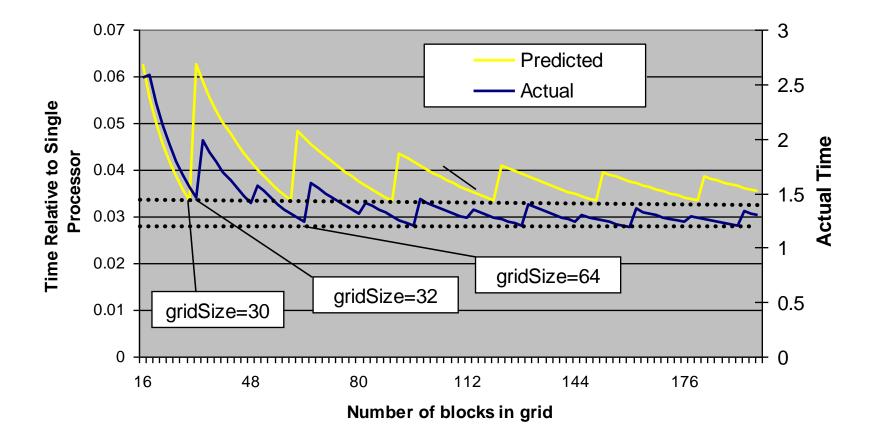
```
____syncthreads();
```

If possible: make a buffer big enough for just one task and operate in-place

Optimisation is highly non-linear

- Small changes produce huge performance swings...
 - Changing the number of threads per block
 - Altering the order of independent statements
 - Supposedly redundant ____syncthread() calls
- General practises apply for Monte Carlo
 - Use large grid sizes: larger than you might expect
 - Allocate arrays to physical memory very carefully
 - Keep out of global memory in inner loops (and outer loops)
 - Prefer computation to global memory
 - Keep threads in a branch together
 - Prefer more complex algorithms with no branches
 - Watch out for statistical branching

The compiler+GPU is a black box



Uniform Random Number Generation

- Goal: generate stream of numbers that "looks random"
- Generated by deterministic mechanism (Pseudo-Random)
 - Must use only standard CPU instructions (unlike True-RNG)
 - Can start two RNGs from same seed and get same stream
- Long period: deterministic generators must repeat
 - Rule of thumb: if we use *n* samples, must have period >> n^2
 - In practise: would prefer period of at least 2128
- Statistically random: high entropy, "random looking"
 - Check using test batteries: look for local correlations and biases
 - Theoretical tests: prove properties of entire sequence

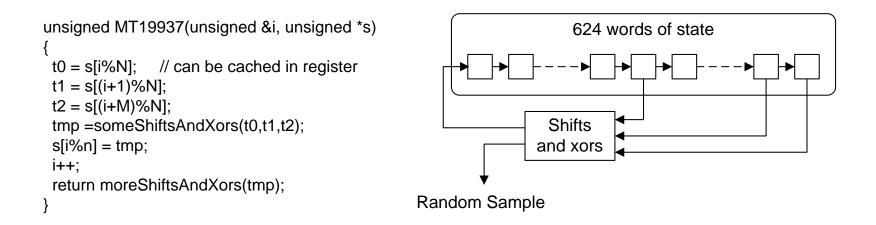
Basics of RNGs

- State-space: each RNG has a finite set of states **s**
 - Given *n* bits in the state, maximum period is 2^n
 - Period of 2¹²⁸ -> must have at least 4 words in state
- Transition function: moves generator from state to state
 f: s -> s
- Output function: convert current state into output sample
 g: s -> [0..2³²) or g: s -> [0,1)
- Choose an initial seed s₀ \in s
 - $S_{i+1} = f(S_i)$
 - $x_i = g(s_i)$
- Period: smallest p such that for all i : x_{i+p}=x_i

Existing RNGS

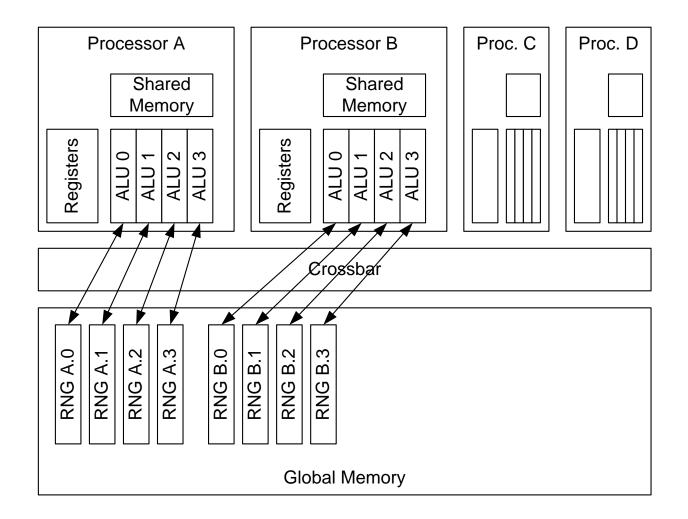
- Lots of existing software generators
 - Linear Congruential
 - Multiply Recursive
 - XorShift
 - Lagged Fibonacci
 - Mersenne Twister
- We can still use these existing generators in a GPU
 - Useful for checking results against CPU
- But! Why not derive new generators for GPU
 - GPU has interesting features: lets use them
 - CPU and GPU costs are different: old algorithms difficult to use

Example: Mersenne Twister



- Well respected generator, widely used
 - Excellent quality: good theoretical and empirical quality
 - Very long period: 2¹⁹⁹³⁷
 - Efficient in software
- Requires a state of 624 words organised as circular buffer
 - Two reads and one write per cycle

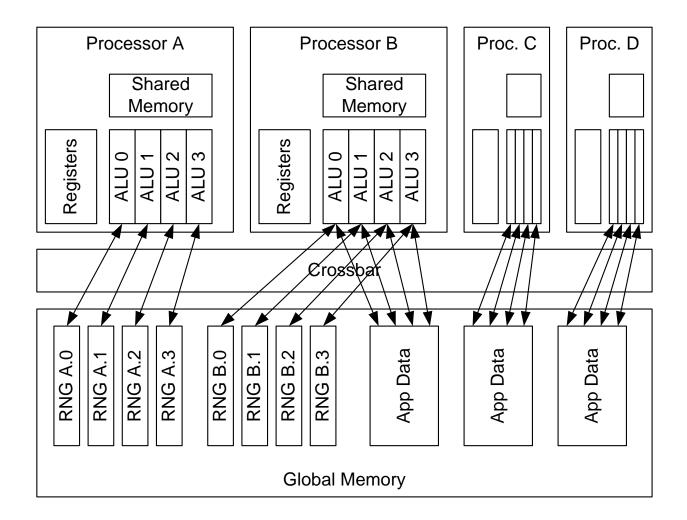
Basic approach: one RNG per thread



The memory bottleneck

- Each thread does two reads and one write per sample
 - 12 bytes of traffic to global memory per sample
 - Total bandwidth is about 18GB/s on C1060
 - Maximum generation rate: ~1.5 GSamples/s
- Might seem like a an acceptable rate
 - RNG is driving simulation: can use up memory latency cycles
 - What if simulation needs to use global memory as well?
- More sophisticated approaches are possible
 - Place RNG states in shared memory in clever ways
 - Code gets very complicated, and RNG API more complex
 - We want a function that looks like rand()
- But... why not try something new?

The memory bottleneck



Designing from scratch for a GPU

- Where can we store RNG state on a GPU
 - Global memory: large, very slow
 - Shared memory: small, fast
 - Registers: small, fast, can't be indexed
- Could store state in shared memory?
 - But would need four or more words per thread... too expensive
- Could store state in registers?
 - Around four registers per thread is ok, but only allows period 2^{128}
 - RNG generator function must be complex (and slow) for quality
- One solution: period 2¹²⁸ generator using registers
 - e.g. Marsaglia's KISS generator: excellent quality, but *slow*

Designing from scratch for a GPU

- Ok, what else does the GPU have that we can use?
 - Automatically synchronised fine-grain warp-level parallelism
 - Automatically synchronised warp-level access to shared memory

```
void rotateBlock(float *mem)
float tmp=s[(tId+1)%bDim];
___syncthreads();
s[tId]=tmp;
__syncthreads();
```

}

```
void rotateWarp(float *mem)
tmp=s[32*wIdx+((wOff+1)%32)];
s[tIdx]=tmp;
```

tId=threadIdx.x, bDim=blockDim.x

wIdx=tId/32, wOff=tId%32

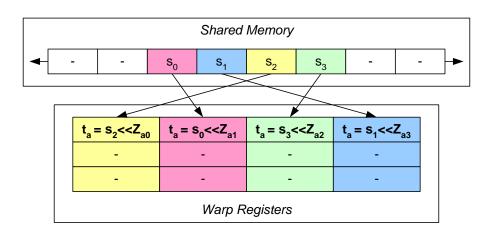
Warp Generators

- Each warp works on a shared RNG
 - All threads execute transition step in parallel
 - Each thread receives a new random number
- RNG state storage is spread across multiple threads
 - Overhead per thread is low, but can still get long periods
- Communicate via shared memory
 - Threads within warp can operate without synchronisation
 - Accesses are fast as long as we observe the rules
- Fine-grain parallelism increases quality
 - Relatively simple per-thread operation
 - Complex transformation to overall state

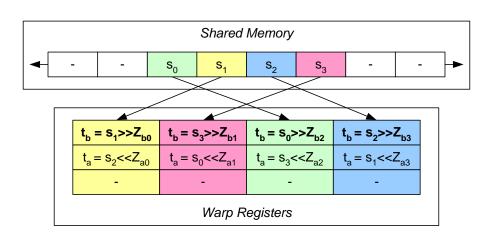
```
const unsigned K=4; // Warp size
#define (wId threadIdx.x / K)
#define (wOff threadIdx.x % K)
const unsigned Qa[K] = \{2, 0, 3, 1\};
const unsigned Qb[K] = \{1, 3, 0, 2\};
const unsigned Za = 3;
const unsigned Zb[K] = \{1, 2, 1, 3\};
// RNG state, one word per thread
shared unsigned s[];
// Generate new number per thread
_____device___ unsigned Generate(unsigned *s) {
 ta = s[ wId*K+Qa[wOff] ] << Za;</pre>
  tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];
  x = ta \wedge tb;
  s[threadIdx.x] = x;
  return x;
```

- Hold state in shared memory
 - One word per thread
- Define a set of per-warp constants
 - Permutations of warp indices
 - One shared shift
 - One per-thread shift
 - These must be chosen carefully!
 - The ones in the code are not valid
 - Four basic steps
 - Read and shift word from state
 - Read and shift different word
 - Exclusive-or them together
 - Write back new state

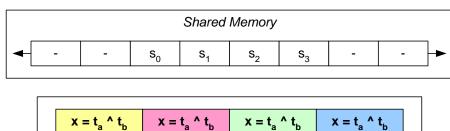
```
const unsigned K=4; // Warp size
#define (wId threadIdx.x / K)
#define (wOff threadIdx.x % K)
const unsigned Qa[K] = \{2, 0, 3, 1\};
const unsigned Qb[K] = \{1, 3, 0, 2\};
const unsigned Za = 3;
const unsigned Zb[K] = \{1, 2, 1, 3\};
// RNG state, one word per thread
shared unsigned s[];
// Generate new number per thread
 device unsigned Generate(unsigned *s)
{
 ta = s[wId*K+Qa[wOff]] << Za;
 tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];
 x = ta \wedge tb;
  s[threadIdx.x] = x;
  return x;
```



```
const unsigned K=4; // Warp size
#define (wId threadIdx.x / K)
#define (wOff threadIdx.x % K)
const unsigned Qa[K] = \{2, 0, 3, 1\};
const unsigned Qb[K] = \{1, 3, 0, 2\};
const unsigned Za = 3;
const unsigned Zb[K] = \{1, 2, 1, 3\};
// RNG state, one word per thread
shared unsigned s[];
// Generate new number per thread
 device unsigned Generate(unsigned *s)
{
 ta = s[ wId*K+Qa[wOff] ] << Za;</pre>
 tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];
 x = ta \wedge tb;
 s[threadIdx.x] = x;
 return x;
```

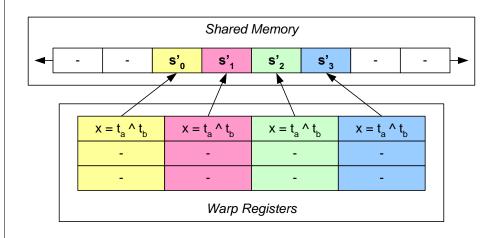


```
const unsigned K=4; // Warp size
#define (wId threadIdx.x / K)
#define (wOff threadIdx.x % K)
const unsigned Qa[K] = \{2, 0, 3, 1\};
const unsigned Qb[K] = \{1, 3, 0, 2\};
const unsigned Za = 3;
const unsigned Zb[K] = \{1, 2, 1, 3\};
// RNG state, one word per thread
shared unsigned s[];
// Generate new number per thread
 device unsigned Generate(unsigned *s)
{
 ta = s[ wId*K+Qa[wOff] ] << Za;</pre>
 tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];
 x = ta ^ tb;
  s[threadIdx.x] = x;
  return x;
```



	$\mathbf{x} = \mathbf{t}_a \cap \mathbf{t}_b$	$\mathbf{x} = \mathbf{t}_a \uparrow \mathbf{t}_b$	$\mathbf{x} = t_a \uparrow t_b$	$\mathbf{x} = \mathbf{t}_a \uparrow \mathbf{t}_b$					
	$t_{b} = s_{1} >> Z_{b0}$	$t_{b} = s_{3} >> Z_{b1}$	$t_{b} = s_{0} >> Z_{b2}$	$t_{b} = s_{2} >> Z_{b3}$					
	$t_a = s_2^2 << Z_{a0}^2$	$t_a = s_0 << Z_{a1}$	$t_a = s_3^{-2} < Z_{a2}^{-2}$	$t_a = s_1 < < Z_{a3}$					
Warp Registers									

```
const unsigned K=4; // Warp size
#define (wId threadIdx.x / K)
#define (wOff threadIdx.x % K)
const unsigned Qa[K] = \{2, 0, 3, 1\};
const unsigned Qb[K] = \{1, 3, 0, 2\};
const unsigned Za = 3;
const unsigned Zb[K] = \{1, 2, 1, 3\};
// RNG state, one word per thread
shared unsigned s[];
____device___ unsigned Generate(unsigned *s)
{
// Generate new number per thread
  ta = s[ wId*K+Qa[wOff] ] << Za;</pre>
  tb = s[ wId*K+Qb[wOff] ] >> Zb[wOff];
  x = ta \wedge tb;
  s[threadIdx.x] = x;
  return x;
```



Features of warp RNGs

- Very efficient: ~ four instructions per random number
- Long period: warp size of 32 -> period of 2¹⁰²⁴
- Managing and seeding parallel RNGs is fast and safe
 - Random initialisation is safe as period is so large
 - Skip within stream is quite cheap: ~3000 instructions per skip
 - Use different constants for each warp: different RNG per warp
 - Can find thousands of valid RNGs easily via binary linear algebra
 - WARNING: you cannot use arbitrary constants: it won't work
- Statistical quality is excellent
 - Four instruction version has correlation problems
 - Very cheap (two instructions) tempering fixes them
 - Higher empirical quality than the Mersenne Twister

Comparison with other RNGs

RNG	Period	Empirical Quality - TestU01 ^[1]			GWord/ second
		Small	Medium	Big	Second
Adder ^[2]	2 ³²	Fail	Fail	Fail	141.28
QuickAndDirty ^[3]	2 ³²	Fail	Fail	Fail	43.84
Warp RNG	2 ¹⁰²⁴	Pass	Pass	Pass	37.58
Park-Miller ^[3]	2 ³²	Fail	Fail	Fail	10.67
MersenneTwister	2 ¹⁹⁹³⁷	Pass	Pass ^[4]	Pass ^[4]	5.85
KISS	2 ¹²³	Pass	Pass	Pass	0.99

1 : TestU01 offers three levels of "crush" tests: small is quite weak, big is very stringent

2 : Adder is not really a random number generator, just a control for performance

3 : QuickAndDirty and Park-Miller are LCGs with modulus 2³² and (2³²-1) respectively

4 : Mersenne Twister fails tests for linear complexity, but that is not a problem in most apps

http://www.doc.ic.ac.uk/~dt10/research/rngs-gpu-uniform.html

Conclusion

- GPUs are rather good for Monte-Carlo simulations
 - Random number generation (PRNG and/or QRNG) is fast
 - Embarrassingly parallel nature works well with GPU
 - Single-precision is usually good enough
- Need to pay some attention to the details
 - Watch out for scalar algorithms: warp divergence hurts
 - Inversion is trickier than it seems
 - Statistical accumulators should use double-precision
 - Keep things out of global memory (but: true of any application)
- If you have the time, think of new algorithms
 - Advantage of CUDA is ability to use existing algorithms/code
 - Potential advantage of GPUs is from new algorithms