The First Thalesian Full-Day Workshop
Programme: GPUs in Finance

September 11", 2009
Department of Computing, Imperial College

Brought to you in collaboration with

<=5 SUPERMICR®' nag

NWiIo&L.
and computer facilities provided for use by

Imperial College Department of Computing and the Oxford Supercomputing Centre.

1 Executive Summary

This workshop will focus on Monte Carlo Pricing Libraries on High Performance Multicore
Architectures. Lectures and hands-on laboratory exercises will be provided by:

Prof. Claudio Albanese (King's College, London)

* Thomas Bradley (NVIDIA)

* Prof. Mike Giles (Mathematical Institute, Oxford University)
* Prof. Paul Kelly (Imperial College, London)

e Dr. David Thomas (Imperial College, London)

* Dr. Robert Tong (NAG)

* Gernot Ziegler (NVIDIA)

Introduction to GPU computing hardware by

» Jas Garcha (Supermicro UK)

and a NAG Q&A session and demo by
* John Holden (NAG)

2 Schedule

MORNING SESSION

08:00 - 08:45. Registration and refreshments

08:45 - 09:00. Welcome Address

09:00 - 09:30. Paul Kelly: Software engineering challenges in many-core computing
09:30 - 10:30. David Thomas: Monte Carlo methods implementation on GPUs

10:30 - 12:30. Lab Session (and coffee) : Using Pseudo-random and Quasi-random Number Generators
in CUDA

Thomas Bradley & Gernot Ziegler: NVIDIA CUDA SDK

Mike Giles & Robert Tong: NAG Numerical Routines for GPUs

12:30 - 13:30. LUNCH BREAK. Introduction to GPU computing hardware by Jas Garcha and NAG
Q&A session and demo by John Holden

AFTERNOON SESSION

13:30 - 14:30. Claudio Albanese: Fourth level BLAS and high performance pricing

14:30 - 16:00. Lab Session (and coffee): Claudio Albanese: OPLib, an open source library for Monte
Carlo pricing implemented in CUDA

16:00 - 17:45. Mike Giles: Monte Carlo and finite difference computations on GPUs (including Lab
session)

17:45 - 18:30. Panel and open discussion

http://developer.download.nvidia.com/compute/cuda/sdk/website/Computational_Finance.html
http://www.nag.co.uk/numeric/gpus/

3 Orientation

Welcome to the first Thalesian GPUs in Finance workshop. This programme will give you a brief
introduction to the format of the day, the lecture and lab sessions and direct you to further information
to help get you started. Additional lecture material will be handed out. The most important item to
check is that you have your login details for the Imperial College Department of Computing machines
and for Skynet, the Oxford Supercomputing Centre's GPU cluster. You should attempt to check that
you can login as early as possible to avoid delays in the lab sessions. Do not attempt to issue any
commands on Skynet until you have read the usage guide- the URL is provided in the Lab Session
Instructions section of this programme.

GPUs have single-instruction multiple-data (SIMD) architectures. Programs for SIMD processors make
extensive use of shared memory to communicate data between the parallel instances of the program. In
contrast to serial programs on CPUs, a programmer must have a broader understanding of the issues
surrounding parallel implementation and performance engineering on many-core architectures. Paul
Kelly, will start the day by introducing you to the challenges of high performance software engineering,
an overview of which is provided in the session descriptions Section on page 6. His biography is
provided on page 12.

The schedule above is split up into morning and afternoon sessions. The morning session focuses on
the fundamentals and the afternoon session is more application orientated. David Thomas will discuss
how Monte-Carlo methods can be efficiently implemented on GPUs. The first lab session will provide
the opportunity to experiment with NAG and NVIDIA pseudo and quasi-random number generators,
which are the fundamental building blocks for Monte-Carlo based pricing applications. URLSs to
instructions on how to run the lab practicals are listed on page 8.

General purpose computing on graphics hardware (GPGPUs) is experiencing a very exciting growth
period as we speak. Having an affordable supercomputer sitting on your desk opens up many new
possibilities for developing, deploying and executing software in a business environment. Supermicro
UK are at the forefront of supplying low-cost high performance GPU based desktop computers and
lunchtime will provide the opportunity to learn more from Jas Garcha. John Holden will also be
demonstrating and hosting a questions and answers session on the numerical routines for GPUs
provided in NAG's new library.

Although the scientific computing community has spent decades developing efficient software for
running numerically intensive code on parallel computers, running financial pricing applications on
GPUs is a much more recent endeavour and demands new development directions. Claudio Albanese
will start the afternoon session by describing a novel layer of software building blocks that are required
for high performance financial derivative pricing, referred to as Basic Linear Algebra Subroutines
(BLAS) level 4. BLAS currently exists as a three layer structure of basic linear algebra routines: vector
operations (BLAS 1), matrix-vector operations (BLAS 2) and matrix-matrix operations (BLAS 3).
Claudio will explain why BLAS 4 routines are needed for high performance pricing and how they are
implemented in OpLib — a set of libraries and benchmarks for high performance pricing routines using
a combination of lattice and Monte Carlo methods. Further details are provided on page 9.

The first afternoon lab session will give you the chance to experiment with OPLib. The goal is to
understand how a small set of highly optimized base routines can provide a very comprehensive
spectrum of pricing applications across all asset classes in higher level languages. You should refer to
lab session description on pages 9-10.

Finally, Mike Giles will discuss the use of finite difference techniques together with Monte Carlo
methods for derivative pricing on GPUs when closed form pricing solutions aren't available. His
lecture notes will be provided separately in printed form and are also available on the workshop's
website. URLs to additional material are also listed on page 11 below. Mike has been instrumental to
the evolution of GPUs in finance and his website provides an excellent reference.

The workshop will close with a panel discussion. This is a good opportunity to share your experiences
with using GPUs for financial applications and raise questions about the future of this exciting growth
area. I'm sure, like us, you are mindful of OpenCL and the forthcoming many-core Intel CPUs and that
practicality is just as important as speed when it comes to adopting CUDA as a tool for implementing
finance models. History has shown time and time again that through sharing these experiences, we can
all make informed choices about choosing the right tool for the task at hand.

Please help us to make the workshop a knowledge sharing experience by providing feedback on our
blog (http://blogs.thalesians.com/gpu) and sign up for future workshops, seminars and other related
events.

4 Session Descriptions

09:00 - 09:30. Paul Kelly: Software Engineering Challenges in Many-core
Computing

This talk is a review and manifesto, looking at what makes building high-performance software hard.
I'll talk about some of the correctness and performance issues, with a specific focus on how these
concerns are destructive to software quality - how performance hacking breaks software abstractions
and reusability. My research has attacked this problem from multiple perspectives; the main aim of this
talk is to set out our agenda for software technologies that allow performance engineering to be isolated
from higher-level algorithmic development - by delivering pluggable domain-specific, or library-
specific, optimisation tools. Our recent examples of this include a collaboration with The Foundry Ltd,
on image processing in visual effects post-production, an active library for dense and sparse linear
algebra, and program generation tools for finite-element CFD.

09:30 - 10:30. David Thomas: Monte Carlo methods implementation on GPUs

Getting the best performance out of GPUs requires one to understand the architectural differences
between GPUs and CPUs, and the way that these differences change the relative costs of computation,
storage, and parallelism. To demonstrate these differences, this session follows the development of a
simple Monte-Carlo simulation for pricing baskets of derivatives over a number of underlying assets,
where the underlyings following a multi-variate normal distribution. During the development process
we examine the different types of physical storage types available, and how their interactions with the
threads can guide the allocation of high-level data to physical storage.

We also focus on one example of algorithmic-level optimisation within the pricing simulator, where we
show how rethinking the process of uniform random number generation can suggest completely
different algorithms, designed just for GPUs. In particular, the fast shared memory and tightly-coupled
intra-warp parallelism allow us to use multiple threads to work together on a single random number
generator. This allows us to derive a new type of generator that provides both a large period (241024)
and excellent statistical quality, while only requiring six instructions per sample

with a generation rate 37 Gwords/sec.

References

* Research on RNGs for GPUs (http://www.doc.ic.ac.uk/~dt10/research/rngs-gpu-uniform.htm)

10:30 - 12:30. Lab Session (and coffee) : Using Pseudo-random and Quasi-random
Number Generators in CUDA

Mike Giles, Robert Tong (NAG), Gernot Ziegler (NVIDIA) and Thomas Bradley (NVIDIA)

In this Lab session, Mike, Robert, Gernot and Thomas will be guiding you through the pseudo and
quasi-random number generators (RNGs) provided in NAG's numerical routines for GPUs library and
the NVIDIA CUDA standard development kit (SDK).

1) For detailed instructions on how to log on to the Oxford supercomputing centre facilities, you
should refer to guidelines below.

2) You should consult pages 1-2 of the lab sessions instructions below for how to use the NAG
pseudo-random number generator.

3) Links to the NAG GPU library and CUDA SDK documentation are also provided below.

The NAG GPU library provides an implementation of Pierre L'Ecuyer's MRG32k3a - a multiple
recursive random number generator for the GPU. This generator has a suitably long period in double
precision which is sufficient for most scientific applications. The skip-ahead capability of MRG32k3a
is particularly suitable for parallel implementation and can take advantage of the GPUs highly
parallelized architecture.

The prac2.cu code calls gpu_mrg32k3a normal, which generates a sequence of normal random
numbers. The output should look similar to:

[cudaXX@compCO007 prac2]$ bin/release/prac2

NAG GPU normal RNG execution time (ms): 83.077003 , samples/sec:
2.311109e+09 Monte Carlo kernel execution time (ms): 8.961000

Average value and standard deviation of error = 0.41755106 0.00048179

http://www.doc.ic.ac.uk/~dt10/research/rngs-gpu-uniform.html

Mike Giles' LIBOR example (libor.cu) demonstrates the usage of gpu_mrg32k3a normal fora
LIBOR market model simulation.

LIBOR example output:
[cudaXX@compC007 libor]$ bin/release/LIBOR example S Release

GPU time (No Greeks) : 39.938999 msec CPU time (No Greeks)
56885.074219 msec average value v = 48.95407269 average error =
0.00007025

The NVIDIA CUDA SDK 2.3 demonstrates various examples of CUDA implementations of single
precision parallel pseudo and quasi-random number generation:

* The MersenneTwister project demonstrates an efficient implementation of Matsumoto's
Mersenne Twister uniform random number generator. This example also implements a Box-
Muller routine for transforming the uniform distribution into a standard normal distribution.

cudaXX@compC007 ~]1$
/opt/cuda/2.3/sdk/C/bin/linux/release/MersenneTwister

(remember to gsub -IVX first when using Skynet)

* The SobolQRNG project demonstrates an efficient parallel implementation by Mike Giles of
Joe and Kuo's Sobol' quasi-random generator. This example also implements Acklam's
polynomial approximation of the inverse cumulative distribution function for transforming
uniform quasi-random numbers to standard normal numbers. Joe and Kuo report that their
Sobol' quasi-random number generator exhibits a uniformity property, known as 'property A', in
up to 16900 dimensions.

cudaXX@compC007 ~1$
/opt/cuda/2.3/sdk/C/bin/linux/release/SobolQRNG

* The quasirandomGenerator project demonstrates efficient parallel implementation of
Niederreiter quasi-random number sequences. The Monte Carlo Option pricing example uses
Niederreiter sequences.

cudaXX@compC007 ~]1$
/opt/cuda/2.3/sdk/C/bin/linux/release/quasirandomGenerator

Instructions

» Lab session instructions (http://people.maths.ox.ac.uk/~gilesm/cuda/imperial_workshop.pdf)

Guidelines

* Guidelines for Skynet usage (http://people.maths.ox.ac.uk/~gilesm/cuda/skynet_notes.pdf)

http://people.maths.ox.ac.uk/~gilesm/cuda/skynet_notes.pdf
http://people.maths.ox.ac.uk/~gilesm/cuda/imperial_workshop.pdf

References

* Introduction to NAG Numerical Routines
(http://www.nag.co.uk/numeric/GPUs/gpu_g05intro.pdf)

* NAG Numerical Routines for GPUs (http://www.nag.co.uk/numeric/GPUs/doc.asp)

* NVIDIA CUDA Programming Guide 2.3 (http://developer.download.nvidia.com/compute/cuda/
2_3/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide_2.3.pdf)

* NVIDIA CUDA Best Practices Guide 2.3 (http://developer.download.nvidia.com/compute/cuda/
2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf)

13:30 - 14:30. Claudio Albanese: Fourth level BLLAS and high performance pricing

A large class of generic stochastic processes which are not necessarily analytically solvable but are still
numerically tractable can be described by giving transition probability kernels over a contiguous set of
time intervals. From the numerical viewpoint, this procedure is highly e

ffective on current microchip architectures as kernels can be conveniently evaluated using GPU co-
processors and then used for scenario generation while storing them in CPU caches. This presentation
describes the pricing methodology and a mathematical framework for Finance based on direct kernel
manipulations, i.e. operator methods. We also discuss a number of techniques based on measure
changes to accomplish tasks such as variance reduction and sensitivity calculations. Numerical
experiments are included along with performance benchmarks. Source code is distributed under GPL
license in a library named OPLib.

14:30 - 16:00. Lab Session (and coffee): Claudio Albanese: OPLib, an open source
library for Monte Carlo pricing implemented in CUDA

Performance results to be reviewed and discussed during the Laboratory session are divided into GPU
and CPU benchmarks for kernel calculation and scenario generation.

My conclusion based on the equipment I experimented with is that GPUs show an impressive factor 15-
20 gain on kernel calculations. Sustained performances on real life problems are: Tesla 860: 180 GF/sec
Tesla 1060: 340 GE/sec Xeon 5460: 15 GF/sec Xeon 5500 (Nehalem): 11 GF/sec. This kernel
benchmark perhaps is biased in favour of GPUs because I spent a lot of time there developing BLAS
Level 4 routines in CUDA such as SGEMM4 and SGEM V4 that operate on tensors. On the CPU side
instead I am still using standard BLAS. I attempted to design a CPU side SGEMM4 by queuing MKL
calls with no success and will leave that as a challenge for the audience.

On the Monte Carlo scenario generation side instead I worked a lot at optimizing both GPUs and CPUs.
I concluded that the two need to be optimized with radically different strategies to exploit the very

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide_2.3.pdf
http://www.nag.co.uk/numeric/GPUs/doc.asp
http://www.nag.co.uk/numeric/GPUs/gpu_g05intro.pdf
http://www.nag.co.uk/numeric/GPUs/gpu_g05intro.pdf

different memory/cache configurations. Results on stochastic volatility models on lattices with 512 sites
are: Tesla 860: 100 million eval/sec Tesla 1060: 230 million eval/sec Xeon 5460: 180 milion eval/sec
Xeon 5500, (Nehalem): 680 million eval/sec An "evaluation" here is a single period draw from a
generic Markov chain. For instance, if an interest rate scenario involves generating a curve
semiannually over 20 years, that corresponds to 40 evaluations. In my metric, CPUs outperform GPUs
by a factor 3 at scenario generation.

The reason for the under-performance is that I am interested in generic processes, not solvable ones
which can be coded using mostly registers and shared memory. For instance, the Black-Scholes
example in the SDK only needs Box-Mueller transformations. Instead, I give myself a family of
cumulative transition probability kernels stored as large matrices in global memory that I need to invert
at every period in the simulation by performing a binary search. The factor 3 advantage CPUs show is
due to the fact that kernels fit snugly into Level3 cache. On GPUs instead, as far as I understand, one is
forced to use global memory for random uncoalesced access. Kernels would fit in shared memory if
this was as large as 2 MB per thread block, but we are far from that mark. Instead, on recent CPUs we
do have 2MB/core of cache.

Another reason for the difference is that I am using hash tables CPU side to speed up the calculation of
inverse probability distribution functions. Since CPU cores are MIMDs with respect to each other, they
can branch independently and can take advantage of this. Hash tables however would worsen the
performance GPU side because of the overhead due to asymmetric branching in thread blocks and
because ultimately thread blocks would default to the worse case scenario. CPUs accelerate slightly [a
10%] in single precision MC calculation, mostly because of better cache management with smaller data
structures. I can't use SSE2 there because I would have to eliminate hash tables in order to avoid uneven
branching . On kernel calculations instead CPUs have about double speed in single than in double
thanks to SSE2.

The ideal solution for orchestrating a Monte Carlo pricing engine is thus a hybrid one, with GPUs
computing kernels by fourth level BLAS and CPUs generating scenarios and valuing payoffs. The two
tasks would take about the same time in a balanced application. The calculation of sensitivities does not
require generating scenarios and valuing payoffs repeatedly for each bumped input, but one can simply
generate a new set of kernels and then value Radon-Nykodym derivatives numerically. The method is
very robust even for second order derivatives and cross-gammas. Finally, backward induction solutions
for callables and calibration should obviously be GPU driven.

Development status

I've just posted OPLib 1.0 RCS, still a beta but a nearly final release of a set of libraries and benchmarks
for high performance pricing routines using a combination of lattice and Monte Carlo methods.

References

* Qverview of Oplib (http://www.level3finance.com)
* Download (http://www.level3finance.com/oplib/OPLibs_1_0_RC_5.zip)

http://www.level3finance.com/oplib/OPLibs_1_0_RC_5.zip
http://www.level3finance.com/

16:00 - 17:45. Mike Giles: Monte Carlo and finite difference computations on GPUs
(including Lab session)

The lecture slides for this talk are supplemental to this booklet. They are also available online through
the URL below along with the instructions for his integrated lab session (see page 3) and guidelines for
using Skynet.

The laplace3d practical sample output:
[cuda0l@compC007 laplace3d]$./bin/release/laplace3d new

Grid dimensions: 256 x 256 x 256
Using device 0: Tesla C1060

Copy ul to device: 31.299999 (ms)
dimGrid = 8 32 1

dimBlock = 32 8 1

10x GPU_laplace3d: 88.652000 (ms)
Copy u2 to host: 74.970001 (ms)

10x Gold laplace3d: 1950.051025 (ms)

rms error = 0.000000

References

» Lab Session instructions (page 3)
(http://people.maths.ox.ac.uk/~gilesm/cuda/imperial_workshop.pdf)

» Lecture slides (http://people.maths.ox.ac.uk/~gilesm/talks/thalesian.pdf)
Guidelines

* Guidelines for Skynet Usage (http://people.maths.ox.ac.uk/~gilesm/cuda/skynet_notes.pdf)

http://people.maths.ox.ac.uk/~gilesm/cuda/skynet_notes.pdf
http://people.maths.ox.ac.uk/~gilesm/talks/thalesian.pdf
http://people.maths.ox.ac.uk/~gilesm/cuda/imperial_workshop.pdf

5 Speaker Biographies

Claudio Albanese is a Visiting Professor in the Financial Mathematics Group at King's College and an
independent consultant at level 3 Finance. He received his doctorate in Physics from ETH Zurich,
following which he held post-doctoral positions at New York University and Princeton University. He
was Associate Professor in the Mathematics Department of the University of Toronto and then
Professor of Mathematical Finance at Imperial College London.

Thomas Bradley MEng(Hons) MIEE graduated with a first-class MEng degree in Computer Systems
Engineering from the University of Bristol in 2000, having also completed the final year of the
Dipléme d’Ingénieur at I’Ecole Nationale Supérieure de Télécommunications in Brest, France. He
worked as processor architect for video encoding processors at STMicroelectronics before moving to
ClearSpeed Technology plc to lead architecture development for general purpose parallel processors.
Since then he has specialised in High Performance Computing software development at ClearSpeed and
now at NVIDIA.

Mike Giles is a Professor of Scientific Computing, a member of the Oxford-Man Institute of
Quantitative Finance, and Associated Director of the Oxford e-Research Centre. He focuses on
improving the accuracy, efficiency and analysis of Monte Carlo and finite difference methods. He is
interested in various aspects of scientific computing, including high performance parallel computing,
and in the last couple of years has been working on the exploitation of graphics cards for scientific
applications in both finance and computational engineering.

Paul Kelly has been on the faculty at Imperial College London since 1989. He teaches courses on
compilers and advanced computer architecture. The main focus of his Software Performance
Optimisation research group is to extend compiler techniques beyond what conventional compilers can
do, by exploiting application domain properties - in particular, recently, with regard to exploiting many-
core, SIMT and SIMD hardware. He is serving as Program Committee co-Chair for the 2010 ACM
Computing Frontiers conference, and chaired the Software track of IPDPS in 2007.

David Thomas is a post-doctoral research associate in the Department of Computing in Imperial
College, working mainly with FPGAs, as part of the Custom Computing group. His two main research
interests are random number generators for FPGAs, and also financial computing using FPGAs. He has
published some 25 articles on computational aspects of Monte Carlo simulations for finance
applications, random number generators and applications of reconfigurable computing.

Robert Tong is a technical consultant for NAG where he is involved with library development and has
worked on data approximation methods, including wavelets and radial basis functions, in addition to

http://www.level3finance.com/

applications in finance. Robert previously held the post of Research Fellow in Applied Mathematics at
the University of Birmingham, where his focus was on the role of numerical software and mathematical
modelling in the context of the failure of structures due to extreme events. He received a PhD from the
University of Bristol (UK) in the area of applied mathematics and scientific computing, following a
first degree in mathematics.

Gernot Ziegler (MSc/civ.ing.) is an Austrian engineer with an MSc degree in Computer Science and
Engineering from Linkdping University, Sweden. He pursued his PhD studies at the Max-Planck-
Institute for Informatics in Saarbriicken, Germany, where he specialized in GPU algorithms for
computer vision and data-parallel algorithms for spatial data structures. He now works at NVIDIA.

	1 Executive Summary
	2 Schedule
	MORNING SESSION
	AFTERNOON SESSION

	3 Orientation
	 	Although the scientific computing community has spent decades developing efficient software for running numerically intensive code on parallel computers, running financial pricing applications on GPUs is a much more recent endeavour and demands new development directions. Claudio Albanese will start the afternoon session by describing a novel layer of software building blocks that are required for high performance financial derivative pricing, referred to as Basic Linear Algebra Subroutines (BLAS) level 4. BLAS currently exists as a three layer structure of basic linear algebra routines: vector operations (BLAS 1), matrix-vector operations (BLAS 2) and matrix-matrix operations (BLAS 3). Claudio will explain why BLAS 4 routines are needed for high performance pricing and how they are implemented in OpLib – a set of libraries and benchmarks for high performance pricing routines using a combination of lattice and Monte Carlo methods. Further details are provided on page 9.

	4 Session Descriptions
	
09:00 - 09:30. Paul Kelly: Software Engineering Challenges in Many-core Computing

	09:30 - 10:30. David Thomas: Monte Carlo methods implementation on GPUs
	10:30 - 12:30. Lab Session (and coffee) : Using Pseudo-random and Quasi-random Number Generators in CUDA
	13:30 - 14:30. Claudio Albanese: Fourth level BLAS and high performance pricing
	14:30 - 16:00. Lab Session (and coffee): Claudio Albanese: OPLib, an open source library for Monte Carlo pricing implemented in CUDA
	Development status
	References
	16:00 - 17:45. Mike Giles: Monte Carlo and finite difference computations on GPUs (including Lab session)
	References

	5 Speaker Biographies

