CUDA Programming on NVIDIA GPUs
Mike Giles

Thalesians workshop: Monte Carlo and Finite Difference examples

Morning session:

1. Log into the Oxford University “skynet” cluster and install the CUDA 2.3
module by following the instructions provided, and then use the command

gsub -IVX

to create an interactive session on one of the compute nodes.

2. Use the command
cp -r ~mgiles/cuda_course/prac2 ~/prac?2

to copy the directory prac2 from my account to yours.
3. Read through the prac2.cu source file and note the following;:

e The way the code is split into one part which runs on the host
processor, and another part which runs on the GPU, with explicit
transfer of data between the two.

e The use of the NAG CUDA RNG library for random number

generation.

e The use of __constant__ memory defined to have global scope for all
kernel routines (i.e. it is defined for the lifetime of the entire
application, not just the lifetime of a single kernel routine, and it can
be referenced by any kernel routine) and the way in which the data is
initialised by copying values over from the host.

e The use of hTimer to time the execution of various parts of the code.

4. Use the Makefile to compile the code (no debug or emulation) and then
run the code in bin/release and see the timings it gives.

5. In the source file, uncomment the “Version 2” lines of code, and comment
out the “Version 1”7 lines. Re-compile and re-run the code to see the effect
of this on the kernel execution time.



. Use the command
cp -r ~mgiles/cuda_course/libor ~/libor
to copy the directory 1libor from my account to yours.

. Use the Makefile to compile the code (no debug or emulation) and then
run the code in bin/release and see the timings it gives.

. Read through the source files, and note in particular the way the
computation is performed on both the CPU and GPU, and the results
compared to check that the GPU computation is correct.

. Try using the visual profiler to profile the GPU execution and check that
the memory transfers are coalesced.



Afternoon session:

1. Use the command
cp -r ~mgiles/cuda_course/laplace3d ~/laplace3d

to copy the directory laplace3d from my account to yours. This has two
codes to solve a 3D Laplace equation, a “new” code which uses texture
mapping, and an “old” version which does not. Both perform the
calculation on both the GPU and the CPU to check that they give the
same answers, and they also time how long they take.

2. Using the Makefile, compile and run the code laplace3d new.

3. By modifying the Makefile (removing all new bits) compile and run the
code laplace3d.

4. Read through laplace3d new.cu, laplace3d new kernel.cu and
laplace3d_gold.cpp (the CPU reference code).

In particular, note:

e The grid is cut into pieces of size 32 x 4 in the x — y direction, and
each thread block uses 128 threads, with each thread processing one
element in each 2D plane.

e The cudaMallocPitch memory allocation in the main code rounds up
the memory allocation for each row in the first (x) coordinate
direction so that each row starts on a multiple of 16; this ensures
memory coalescence later on when writing to the u2 array.

e In the kernel code, IOFF, JOFF, KOFF give the memory offsets in the
three coordinate directions.

5. Have a look also at laplace3d.cu and laplace3d kernel.cu and the
notes in laplace3d.pdf which are also available at
http://people.maths.ox.ac.uk/~gilesm/codes/laplace3d/laplace3d.pdf

The main thing to note is how much more complex the programming is. In
this simple example which involves very little computation it gives a factor
2 improvement in performance, but in cases involving more computational
effort the texture mapping version will probably be almost as efficient and
involves much simpler programming.


http://people.maths.ox.ac.uk/~gilesm/codes/laplace3d/laplace3d.pdf

