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Co-inventor of, and chief engineer on, the ENIAC, arguably the first stored-

program computer (first operational Feb 14th 1946)

27 tonnes, 150KW, 5000 cycles/sec

J Presper Eckert (1919-1995)



J.G. Brainerd & T.K. Sharpless. "The ENIAC." pp 163-172 Electrical Engineering, Feb 1948.

ENIAC was a parallel
computer

Different parts of the 
machine could be doing 
different things at the same 
time



ENIAC was designed to be set up manually by plugging 
arithmetic units together (reconfigurable logic)

You could plug together quite complex configurations 

Parallel - with multiple units working at the same time

ENIAC: “setting up the machine”

http://www.columbia.edu/acis/history/eniac.html



Gloria Gorden and Ester Gerston: programmers on ENIAC 
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The Moore School 

Lectures

The first ever computer 

architecture conference 

July 8th to August 31st 

1946, at the Moore 

School of Electrical 

Engineering, University 

of Pennsylvania 

A defining moment in 

the history of computing

To have been there….
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But…the free lunch is over

Philip E Ross, Why CPU Frequency Stalled - http://www.spectrum.ieee.org/apr08/6106/CPU
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Intel CPU introductions

Moore’s Law 

“escalator” 

continues

Clock speed 

escalator has 

stopped!

Herb Sutter, Fundamental Turn Toward Concurrency 



Controlling complexity
But “It has been shown over and over again…” that 

this results in a system too complicated to use 

How can we get the speed and efficiency without 

suffering the complexity?

What have we learned since 1946?



Controlling complexity
But “It has been shown over and over again…” that 

this results in a system too complicated to use 

How can we get the speed and efficiency without 

suffering the complexity?

What have we learned since 1946?

We really need parallelism



Controlling complexity
But “It has been shown over and over again…” that 

this results in a system too complicated to use 

How can we get the speed and efficiency without 

suffering the complexity?

What have we learned since 1946?

Compilers and out-of-order processors can extract some 

instruction-level parallelism

Explicit parallel programming in MPI, OpenMP, VHDL are 

flourishing industries – they can be made to work

SQL, TBB, Cilk, Ct (all functional…), many more 

speculative proposals

No attractive general-purpose solution



Controlling complexity
But “It has been shown over and over again…” that 

this results in a system too complicated to use 

How can we get the speed and efficiency without 

suffering the complexity?

What have we learned since 1946?

Some discipline for controlling complexity

Program generation….

Programs that generate programs

That are correct by construction

The generator encapsulates parallel programming 

expertise



Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

Easy parallelism
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No problem: each iteration is independent

Can the iterations 

of this loop be 

executed in 

parallel?



Easy parallelism

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Oh no: not all the iterations are independent! 

You want to re-use piece of code in different contexts

Whether it’s parallel depends on context!

Can the iterations 

of this loop be 

executed in 

parallel?



Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

Easy parallelism
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Can the iterations 

of this loop be 

executed in 

parallel?

“Balloon types” or “ownership types” ensure that 

each cell is reached only by it’s owner pointer



Points-to analysis

Goal: for each pointer variable (p,q,r,s), find 
the set of objects it might point to at runtime

Variable s of 

function g might 

point to variable 

p of function g

R might point to 

anything s might 

point to

f’s p might point 

to anything r 

might point to

q might point to 

anything f 

returns



Field-sensitivity in pointer analysis
We have quite a large constraint graph

Eg for 126.gcc from SPEC95:

194K lines of code (132K excl comments)

51K constraint variables (22K of them heap)

7.4K “trivial” constraints 

39K “simple” constraints 

25K “complex” constraints (due to 

dereferencing)

Need to bring together several tricky techniques 

to get sensible solution times

Difference-sets: propagate only changes so you 

can track what has changed

Topological sort:  visit nodes in order that 

maximises solution propagation

Cycle detection: zero-weighted cycles can be 

collapsed

Dynamically: dereferencing pointers adds new 

edges

0.61s for the whole program (900MHz Athlon)

Histogram of points-
to set size at 
dereference sites for 
126.gcc:

•Field insensitive

•Field sensitive

%

%



Another loss of abstraction…
Shared memory makes parallel 
programming much easier:

for(i=0; I<N; ++i) 

par_for(j=0; j<M; ++j) 

A[i,j] = (A[i-1,j] + A[i,j])*0.5;

par_for(i=0; I<N; ++i) 

for(j=0; j<M; ++j) 

A[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel

Second loop operates on columns in 
parallel

With distributed memory we would have 
to program message passing to 
transpose the array in between

With shared memory… no problem!

i

i

j

j

Loop 1:

Loop 2:

P1

P1



Self-optimising linear algebra library

x:= p+x

A r x

q:=A.p :=r.r

:=q.p

:= /

A: blocked row-major x: blocked row-wiser: blocked row-wise

transpose

p:=r

Olav Beckmann’s PhD 

thesis:

Each library function 

comes with metadata 

describing data layout 

constraints

Solve for distribution 

of each variable that 

minimises 

redistribution cost



Easy parallelism – tricky engineering

Finding parallelism is usually 
easy

Very few algorithms are inherently 
sequential

But if you want a large speedup you 
need to parallelise almost all of your 
program

Parallelism breaks abstractions:
Whether code should run in parallel 
depends on context

How data and computation should 
be distributed across the machine 
depends on context

“Best-effort”, opportunistic 
parallelisation is almost useless:

Robust software must robustly, 
predictably, exploit large-scale 
parallelism

How can we build 

robustly-efficient 

multicore software

While maintaining the 

abstractions that keep 

code clean, reusable and 

of long-term value?



Case study: Visual Effects
• The Foundry is a London company building visual 

effects plug-ins for the movie/TV industry 
(http://www.thefoundry.co.uk/)

• Core competence: image processing algorithms

• Core value: large body of C++ code based on library 
of image-based primitives

Opportunity 1:
Competitive advantage from exploitation of whatever 
platform the customer may have - SSE, multicore, vendor 
libraries, GPUs

Opportunity 2:
Redesign of the Foundry’s Image Processing Primitives 
Library

Risk:
Premature optimisation delays delivery

Performance hacking reduces value of core codebase

http://www.thefoundry.co.uk/


Visual effects in movie post-production

Nuke compositing tool (http://www.thefoundry.co.uk)

• Visual effects plugins (Foundry and others) appear as nodes in the node graph

• We aim to optimise individual effects for multicore CPUs, GPUs etc

• In the future: tunnel optimisations across node boundaries at runtime.

(c) Heribert Raab, Softmachine.  All rights reserved.  Images courtesy of The Foundry



Visual effects: degrain example

Image degraining effect – a complete Foundry plug-in

Random texturing noise introduced by photographic film is 
removed without compromising the clarity of the picture, either 
through analysis or by matching against a database of known 
film grain patterns

Based on undecimated wavelet transform

Up to several seconds per frame



Visual effects: degrain example

The recursive wavelet-based degraining visual effect in C++

Visual primitives are chained together via image temporaries to form a DAG

DAG construction is captured through delayed evaluation.



Indexed functor
• Functor represents function over an image

• Kernel accesses image via indexers

• Indexers carry metadata that characterises kernel’s data access pattern

One-dimensional discrete wavelet transform, as indexed functor

Compilable with standard C++ compiler

Operates in either the horizontal or vertical axis
Input indexer operates on RGB components separately

Input indexer accesses ±radius elements in one (the axis) dimension



Software architecture

Use of indexed functors is optimised 

using a source-to-source compiler 

(based on ROSE, 

www.rosecompiler.org)

DAG 

capture

Source 

code 

analysis

Indexed 

functor 

kernels

Functor 

composition 

DAG for 

visual effect

Indexed 

functor 

dependence 

metadata

SIMD/SIMT 

code 

generation

Polyhedral 

representation 

of composite 

iteration space 

Schedule 

transformation 

– loop fusionDAG 

scheduling

Array contraction 

and scratchpad 

staging
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Two generic targets

Lots of cache per thread

Lower DRAM bandwidth

32
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32x

SMT

SIMT

x86
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SIMD

Cache

4GB

Commodity 

DRAM

Scratchpad memory

1GB

Highly-interleaved 

DRAM

×8 ×24
x86

4-lane

SIMD

x86

4-lane

SIMD

x86

4-lane

SIMD

x86

4-lane

SIMD

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

Very, very little cache per 
thread

Very small scratchpad 
RAM shared by blocks of 
threads

Higher DRAM bandwidth

SIMD Multicore CPU SIMT Manycore GPU

Goal: 

• single source code, high-performance code for 
multiple manycore architectures

Proof-of-concept: two targets

Very different, need very different optimisations



The SIMD target…
Code generation for conventional PC with 
SSE (“SIMD”) instructions:

Aggressive loop fusion and array contraction
Using the CLooG code generator to generate the loop 
fragments

Vectorisation and Scalar promotion
Correctness guaranteed by dependence metadata

If-conversion
Generate code to use masks to track conditionals

Memory access realignment:
In SIMD architectures where contiguous, aligned 
loads/stores are faster, placement of intermediate data is 
guided by metadata to make this so

Contracted load/store rescheduling:
Filters require mis-aligned SIMD loads

After contraction, these can straddle the end of the circular 
buffer – we need them to wrap-around

We use a double-buffer trick…



SIMT – code generation for nVidia’s CUDA

Constant/shared memory staging
Where data needed by adjacent threads overlaps, we generate 
code to stage image sub-blocks in scratchpad memory

Maximising parallelism
Moving-average filters are common in VFX, and involve a loop-
carried dependence

We catch this case with a special “eMoving” index type

We create enough threads to fill the machine, while efficiently 
computing a moving average within each thread

Coordinated coalesced memory access
We shift a kernel’s iteration space, if necessary, to arrange an 
thread-to-data mapping that satisfies the alignment requirements 
for high-bandwidth, coalesced access to global memory

We introduce transposes to achieve coalescing in horizontal 
moving-average filters 

Choosing optimal scheduling parameters
Resource management and scheduling parameters are derived 
from indexed functor metadata, and used to select optimal 
mapping of threads onto processors.



Performance results



Active libraries
Domain-specific “active” library 

encapsulates specialist 

performance expertise

Each new platform requires new 

performance tuning effort

So domain-specialists will be 

doing the performance tuning

Our challenge is to support 

them

Applications

Exotic hardware

Active library

GPU Multicore FPGA Quantum?

Visual effects
Finite element

Linear algebra
Game physics

Finite difference



So  what of the future?

Eckert was wrong – we just 

need the right…

Language

Machine

Discipline

Abstractions

Education

Eckert was right –

Avoid parallel 

programming!

Isolate ordinary software 

from parallelism

http://www.ralphclevenger.com/

We need tools to build 

really clever parallel 

implementations

And tools to deliver 

them

Tools to build really 

clever parallel 

implementations

Tools to deliver them

And protect us from 

what lurks below

Parallelism is 

everywhere

Parallelism is 

essential

Parallelism is 

disruptive – it 

breaks abstractions


