
Software engineering challenges in

many-core computing

Paul Kelly

Group Leader, Software Performance Optimisation

Department of Computing

Imperial College London

Thalesians Workshop on GPUs in Finance

Co-inventor of, and chief engineer on, the ENIAC, arguably the first stored-

program computer (first operational Feb 14th 1946)

27 tonnes, 150KW, 5000 cycles/sec

J Presper Eckert (1919-1995)

J.G. Brainerd & T.K. Sharpless. "The ENIAC." pp 163-172 Electrical Engineering, Feb 1948.

ENIAC was a parallel
computer

Different parts of the
machine could be doing
different things at the same
time

ENIAC was designed to be set up manually by plugging
arithmetic units together (reconfigurable logic)

You could plug together quite complex configurations

Parallel - with multiple units working at the same time

ENIAC: “setting up the machine”

http://www.columbia.edu/acis/history/eniac.html

Gloria Gorden and Ester Gerston: programmers on ENIAC

h
tt

p
:/

/w
w

w
.c

o
lu

m
b

ia
.e

d
u
/a

c
is

/h
is

to
ry

/e
n

ia
c
.h

tm
l

The Moore School

Lectures

The first ever computer

architecture conference

July 8th to August 31st

1946, at the Moore

School of Electrical

Engineering, University

of Pennsylvania

A defining moment in

the history of computing

To have been there….

…

S
e
e
 a

ls
o
 h

tt
p
:/
/w

w
w

.d
ig

it
a
l6

0
.o

rg
/b

ir
th

/t
h
e
m

o
o
re

s
c
h
o
o
l/
le

c
tu

re
s
.h

tm
l#

l4
5

But…the free lunch is over

Philip E Ross, Why CPU Frequency Stalled - http://www.spectrum.ieee.org/apr08/6106/CPU

h
tt

p
:/

/w
w

w
.d

d
j.
c
o

m
/w

e
b

-d
e

v
e

lo
p
m

e
n

t/
1
8

4
4
0

5
9
9

0
?
p

g
n
o

=
2

Intel CPU introductions

Moore’s Law

“escalator”

continues

Clock speed

escalator has

stopped!

Herb Sutter, Fundamental Turn Toward Concurrency

Controlling complexity
But “It has been shown over and over again…” that

this results in a system too complicated to use

How can we get the speed and efficiency without

suffering the complexity?

What have we learned since 1946?

Controlling complexity
But “It has been shown over and over again…” that

this results in a system too complicated to use

How can we get the speed and efficiency without

suffering the complexity?

What have we learned since 1946?

We really need parallelism

Controlling complexity
But “It has been shown over and over again…” that

this results in a system too complicated to use

How can we get the speed and efficiency without

suffering the complexity?

What have we learned since 1946?

Compilers and out-of-order processors can extract some

instruction-level parallelism

Explicit parallel programming in MPI, OpenMP, VHDL are

flourishing industries – they can be made to work

SQL, TBB, Cilk, Ct (all functional…), many more

speculative proposals

No attractive general-purpose solution

Controlling complexity
But “It has been shown over and over again…” that

this results in a system too complicated to use

How can we get the speed and efficiency without

suffering the complexity?

What have we learned since 1946?

Some discipline for controlling complexity

Program generation….

Programs that generate programs

That are correct by construction

The generator encapsulates parallel programming

expertise

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

Easy parallelism

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

No problem: each iteration is independent

Can the iterations

of this loop be

executed in

parallel?

Easy parallelism

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Oh no: not all the iterations are independent!

You want to re-use piece of code in different contexts

Whether it’s parallel depends on context!

Can the iterations

of this loop be

executed in

parallel?

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

Easy parallelism

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Can the iterations

of this loop be

executed in

parallel?

“Balloon types” or “ownership types” ensure that

each cell is reached only by it’s owner pointer

Points-to analysis

Goal: for each pointer variable (p,q,r,s), find
the set of objects it might point to at runtime

Variable s of

function g might

point to variable

p of function g

R might point to

anything s might

point to

f’s p might point

to anything r

might point to

q might point to

anything f

returns

Field-sensitivity in pointer analysis
We have quite a large constraint graph

Eg for 126.gcc from SPEC95:

194K lines of code (132K excl comments)

51K constraint variables (22K of them heap)

7.4K “trivial” constraints

39K “simple” constraints

25K “complex” constraints (due to

dereferencing)

Need to bring together several tricky techniques

to get sensible solution times

Difference-sets: propagate only changes so you

can track what has changed

Topological sort: visit nodes in order that

maximises solution propagation

Cycle detection: zero-weighted cycles can be

collapsed

Dynamically: dereferencing pointers adds new

edges

0.61s for the whole program (900MHz Athlon)

Histogram of points-
to set size at
dereference sites for
126.gcc:

•Field insensitive

•Field sensitive

%

%

Another loss of abstraction…
Shared memory makes parallel
programming much easier:

for(i=0; I<N; ++i)

par_for(j=0; j<M; ++j)

A[i,j] = (A[i-1,j] + A[i,j])*0.5;

par_for(i=0; I<N; ++i)

for(j=0; j<M; ++j)

A[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel

Second loop operates on columns in
parallel

With distributed memory we would have
to program message passing to
transpose the array in between

With shared memory… no problem!

i

i

j

j

Loop 1:

Loop 2:

P1

P1

Self-optimising linear algebra library

x:= p+x

A r x

q:=A.p :=r.r

:=q.p

:= /

A: blocked row-major x: blocked row-wiser: blocked row-wise

transpose

p:=r

Olav Beckmann’s PhD

thesis:

Each library function

comes with metadata

describing data layout

constraints

Solve for distribution

of each variable that

minimises

redistribution cost

Easy parallelism – tricky engineering

Finding parallelism is usually
easy

Very few algorithms are inherently
sequential

But if you want a large speedup you
need to parallelise almost all of your
program

Parallelism breaks abstractions:
Whether code should run in parallel
depends on context

How data and computation should
be distributed across the machine
depends on context

“Best-effort”, opportunistic
parallelisation is almost useless:

Robust software must robustly,
predictably, exploit large-scale
parallelism

How can we build

robustly-efficient

multicore software

While maintaining the

abstractions that keep

code clean, reusable and

of long-term value?

Case study: Visual Effects
• The Foundry is a London company building visual

effects plug-ins for the movie/TV industry
(http://www.thefoundry.co.uk/)

• Core competence: image processing algorithms

• Core value: large body of C++ code based on library
of image-based primitives

Opportunity 1:
Competitive advantage from exploitation of whatever
platform the customer may have - SSE, multicore, vendor
libraries, GPUs

Opportunity 2:
Redesign of the Foundry’s Image Processing Primitives
Library

Risk:
Premature optimisation delays delivery

Performance hacking reduces value of core codebase

http://www.thefoundry.co.uk/

Visual effects in movie post-production

Nuke compositing tool (http://www.thefoundry.co.uk)

• Visual effects plugins (Foundry and others) appear as nodes in the node graph

• We aim to optimise individual effects for multicore CPUs, GPUs etc

• In the future: tunnel optimisations across node boundaries at runtime.

(c) Heribert Raab, Softmachine. All rights reserved. Images courtesy of The Foundry

Visual effects: degrain example

Image degraining effect – a complete Foundry plug-in

Random texturing noise introduced by photographic film is
removed without compromising the clarity of the picture, either
through analysis or by matching against a database of known
film grain patterns

Based on undecimated wavelet transform

Up to several seconds per frame

Visual effects: degrain example

The recursive wavelet-based degraining visual effect in C++

Visual primitives are chained together via image temporaries to form a DAG

DAG construction is captured through delayed evaluation.

Indexed functor
• Functor represents function over an image

• Kernel accesses image via indexers

• Indexers carry metadata that characterises kernel’s data access pattern

One-dimensional discrete wavelet transform, as indexed functor

Compilable with standard C++ compiler

Operates in either the horizontal or vertical axis
Input indexer operates on RGB components separately

Input indexer accesses ±radius elements in one (the axis) dimension

Software architecture

Use of indexed functors is optimised

using a source-to-source compiler

(based on ROSE,

www.rosecompiler.org)

DAG

capture

Source

code

analysis

Indexed

functor

kernels

Functor

composition

DAG for

visual effect

Indexed

functor

dependence

metadata

SIMD/SIMT

code

generation

Polyhedral

representation

of composite

iteration space

Schedule

transformation

– loop fusionDAG

scheduling

Array contraction

and scratchpad

staging

C
o
d
e
 g

e
n
e
ra

ti
o
n

V
e
n
d
o
r

c
o
m

p
ile

r

Two generic targets

Lots of cache per thread

Lower DRAM bandwidth

32

lane

32x

SMT

SIMT

x86

4-lane

SIMD

Cache

4GB

Commodity

DRAM

Scratchpad memory

1GB

Highly-interleaved

DRAM

×8 ×24
x86

4-lane

SIMD

x86

4-lane

SIMD

x86

4-lane

SIMD

x86

4-lane

SIMD

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

32

lane

32x

SMT

SIMT

Very, very little cache per
thread

Very small scratchpad
RAM shared by blocks of
threads

Higher DRAM bandwidth

SIMD Multicore CPU SIMT Manycore GPU

Goal:

• single source code, high-performance code for
multiple manycore architectures

Proof-of-concept: two targets

Very different, need very different optimisations

The SIMD target…
Code generation for conventional PC with
SSE (“SIMD”) instructions:

Aggressive loop fusion and array contraction
Using the CLooG code generator to generate the loop
fragments

Vectorisation and Scalar promotion
Correctness guaranteed by dependence metadata

If-conversion
Generate code to use masks to track conditionals

Memory access realignment:
In SIMD architectures where contiguous, aligned
loads/stores are faster, placement of intermediate data is
guided by metadata to make this so

Contracted load/store rescheduling:
Filters require mis-aligned SIMD loads

After contraction, these can straddle the end of the circular
buffer – we need them to wrap-around

We use a double-buffer trick…

SIMT – code generation for nVidia’s CUDA

Constant/shared memory staging
Where data needed by adjacent threads overlaps, we generate
code to stage image sub-blocks in scratchpad memory

Maximising parallelism
Moving-average filters are common in VFX, and involve a loop-
carried dependence

We catch this case with a special “eMoving” index type

We create enough threads to fill the machine, while efficiently
computing a moving average within each thread

Coordinated coalesced memory access
We shift a kernel’s iteration space, if necessary, to arrange an
thread-to-data mapping that satisfies the alignment requirements
for high-bandwidth, coalesced access to global memory

We introduce transposes to achieve coalescing in horizontal
moving-average filters

Choosing optimal scheduling parameters
Resource management and scheduling parameters are derived
from indexed functor metadata, and used to select optimal
mapping of threads onto processors.

Performance results

Active libraries
Domain-specific “active” library

encapsulates specialist

performance expertise

Each new platform requires new

performance tuning effort

So domain-specialists will be

doing the performance tuning

Our challenge is to support

them

Applications

Exotic hardware

Active library

GPU Multicore FPGA Quantum?

Visual effects
Finite element

Linear algebra
Game physics

Finite difference

So what of the future?

Eckert was wrong – we just

need the right…

Language

Machine

Discipline

Abstractions

Education

Eckert was right –

Avoid parallel

programming!

Isolate ordinary software

from parallelism

http://www.ralphclevenger.com/

We need tools to build

really clever parallel

implementations

And tools to deliver

them

Tools to build really

clever parallel

implementations

Tools to deliver them

And protect us from

what lurks below

Parallelism is

everywhere

Parallelism is

essential

Parallelism is

disruptive – it

breaks abstractions

