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Co-inventor of, and chief engineer o, . ENIAC, arguably the first stored-
program computer (first operational Feb 14t 1946)

27 tonnes, 150KW, 5000 cycles/sec
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J.G. Brainerd & T.K. Sharpless. "The ENIAC." pp 163-172 Electrical Engineering, Feb 1948.



ORAWING NUMBER PX-/-82 PANEL DIAGRAM OF THE ELECTRON

= ENIAC: “setting up the machine”
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ENIAC was deS|gned to be set up manually by plugglng
sarithmetic units together (reconfigurable logic)
g B You could plug together quite complex configurations

. I Parallel - with multiple units working at the same time
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BGloria Gorden and Ester Gerston: programmers on ENIAC



THEORY AND TECHNIQUES
FOR DESIGN OF
ELECTRONIC DIGITAL COMPUTERS

Lectures given at the Moore School
8 July 1946 —31 August 1946

Volume IV
Lectures 34-48

UNIVERSITY OF PENNSYLVANIA
Moore Schocl of Electrical Engineering

PHILADELPHIA, PENNSYLVANIA

June 30, 1948

The first ever computer
architecture conference

July 8th to August 31st
1946, at the Moore
School of Electrical
Engineering, University
of Pennsylvania

A defining moment in
the history of computing

To have been there....



LECTURE 45 26 AUGUST 1946

A PARALIEL CHANNEL CGUPUTING :iiCHINE

Lecture by
J. P, Eckert, Jr,
Electronic Control Company

« «» Again I wish to reiterate the point that all the arguments
for parallel operation are only valid provided one applies them to
the steps which the bullt in or wired in programming of the machine
ni:-emtcs‘. Any steps which are progra.med by the operator, who sets
up the machine, should be set up only in a serisl fashion, It has

heen shown over and over again that any departure from thlis procedure

results in a system which is much too complicated to use,

See also http://www.digital60.org/birth/themooreschool/lectures.html#45
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But “It has been shown over and over again...” that
this results in a system too complicated to use

B How can we get the speed and efficiency without
suffering the complexity?

B \What have we learned since 19467
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But “It has been shown over and over again...” that
this results in a system too complicated to use

B How can we get the speed and efficiency without
suffering the complexity?

B \What have we learned since 19467
B We really need parallelism
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B But ‘It has been shown over and over again...” that
this results in a system too complicated to use

B How can we get the speed and efficiency without
suffering the complexity?

B \What have we learned since 19467

B Compilers and out-of-order processors can extract some
Instruction-level parallelism

B Explicit parallel programming in MPI, OpenMP, VHDL are
flourishing industries — they can be made to work

E SQL, TBB, Cilk, Ct (all functional...), many more
speculative proposals

B No attractive general-purpose solution
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B But ‘It has been shown over and over again...” that
this results in a system too complicated to use

B How can we get the speed and efficiency without
suffering the complexity?

B What have we learned since 19467
B Some discipline for controlling complexity
B Program generation....
E Programs that generate programs
B That are correct by construction

E The generator encapsulates parallel programming
expertise
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Example: B Can the iterations
for (i=0; i<N: ++i) { of this loop be

} points[i]->x += 1; i);faClllJetle?d in
2N T T 20 A
S e

ENo problem: each iteration is independent
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Example: B Can the iterations
for (I=0; I<N; ++1) { of this loop be

} points[i]->x += 1; ig?aclll.lete?d in
TRTRINATRIRIA
NI

EOh no: not all the iterations are independent!
B You want to re-use piece of code Iin different contexts
B \Whether it’s parallel depends on context!
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Example: B Can the iterations
for (i=0; i<N; ++i) { of this loop be
executed In

oints[i]->x += 1:
P ] narallel?

}

“Balloon types” or “ownership types” ensure that
each cell is reached only by it’'s owner pointer
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Variable s of
int *£(int *p) { fur_lction g might
_ 1 5 point to variable
| return p; (1) 2 fo p of function g
imizngtji ; b rg, sr see; R might point to
raroEr = ' ' anything s might
S=&p; (2) gs 2 {91“ point to
if(...) p=&x; (3) 91’2{91 . .
f's p might point
else p=&y; (4) o 2 {gy to anything r
e (5) gr 2 gs might point to
q=f (*1) ; (6) fo 2 *gr q might point to
] (7) g 2 f anything f

returns

B Goal: for each pointer variable (p,q,r,s), find
the set of objects it might point to at runtime
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E\We have quite a large constraint graph

Eg for 126.gcc from SPEC95:

194K lines of code (132K excl comments)
51K constraint variables (22K of them heap)
7.4K ‘“trivial” constraints

39K “simple” constraints 2};

25K “complex” constraints (due to
dereferencing)

ENeed to bring together several tricky techniques
to get sensible solution times

Difference-sets: propagate only changes so yo
can track what has changed

Topological sort: visit nodes in order tht
maximises solution propagation

Cycle detection: zero-weighted cycleg can be
collapsed

Dynamically: dereferencing pointers adc
edges

0O 61< for the whole nroaram (OOOMH7 Athlon)

B Histogram of points-
to set size at
dereference sites for
126.gcc:

/
7
7 9
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0 _1 2 3__10 100 1000
*Fleld sensitive
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w Shared memory makes parallel
programming much easier:

for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
AlL] = (Afi-1,)] + A[1L])*0.5;
par_for(i=0; I<N; ++i)
for(j=0; J<M; ++j)
AlLT = (AlLJ-1] + A[L])*0.5;

» First loop operates on rows in parallel

W Second loop operates on columns in
parallel

W With distributed memory we would have
to program message passing to
transpose the array in between

W With shared memory... no problem!

Loop 2:
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k)

A: blocked row-major r: blocked row-wise X: blocked row-wise

B Olav Beckmann’s PhD
thesis:

B Each library function

comes with metadata
describing data layout
constraints

B Solve for distribution
of each variable that
minimises
redistribution cost

X:=Bp+x
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Finding parallelism is usually
easy

Very few algorithms are inherently
sequential

B But if you want a large speedup you
need to parallelise almost all of your
program

Parallelism breaks abstractions:

B Whether code should run in parallel
depends on context

B How data and computation should
be distributed across the machine
depends on context

“Best-effort”, opportunistic
parallelisation is almost useless:

B Robust software must robustly,
predictably, exploit large-scale
parallelism

How can we build
robustly-efficient
multicore software

While maintaining the
abstractions that keep
code clean, reusable and
of long-term value?
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* The Foundry is a London company building visual
effects plug-ins for the movie/TV industry

( )

* Core competence: image processing algorithms

* Core value: large body of C++ code based on library
of Image-based primitives

B Opportunity 1:

= Competitive advantage from exploitation of whatever
platform the customer may have - SSE, multicore, vendor
libraries, GPUs

B Opportunity 2:

m Redesign of the Foundry’s Image Processing Primitives
Library

E Risk:
s Premature optimisation delays delivery
s Performance hacking reduces value of core codebase


http://www.thefoundry.co.uk/
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Nuke compositing tool (http://www.thefoundry.co.uk)

Visual effects plugins (Foundry and others) appear as nodes in the node graph
We aim to optimise individual effects for multicore CPUs, GPUs etc
In the future: tunnel optimisations across node boundaries at runtime.

c) Heribert Raab. Softmachine. All riahts reserved. Imaages courtesy of The Foundr



F Image degraining effect — a complete Foundry plug-in

B Random texturing noise introduced by photographic film is
removed without compromising the clarity of the picture, either
through analysis or by matching against a database of known
film grain patterns

B Based on undecimated wavelet transform
I Up to several seconds per frame




Image DeGrainRecurse (Image input, int level = 0) {

}

Image HY,LY,HH,HL,LH,LL, HHP, HLP, LHP, LLP, pSuml, pSum2, out;

/
(sowee )

DWT1D hDWT (eHorizontal, 1 << level); Coon)
DWT1D vDWT (eVertical, 1 << level); o>
hDWT (input, HY, LY); )

vDWT (HY, HH, LH); @ @
vDWT (LY, LH, LL); A
prop (HH, HHP);

prop (LH, LHP);

prop (il Y CONEDICTY

Sum sum;
sum (HHP, LHP, pSuml);

sum (HLP, pSuml, pSum2); @ @ @
/* Go to the next level of recursion. */ <y
LLP = (level < 3) ? DeGrainRecurse(LL, level+l) : LL; e

sum (pSum2, LLP, out); i
return out; (Ga)

E The recursive wavelet-based degraining visual effect in C++
B Visual primitives are chained together via image temporaries to form a DAG
EDAG construction is captured through delayed evaluation.
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« Functor represents function over an image

« Kernel accesses image via indexers
* Indexers carry metadata that characterises kernel’s data access pattern

class DWT1D : public Functor<DWT1D, eParallel> ({
Indexer<elnput, eComponent, elD> Input;
Indexer<eOutput, eComponent, e0D> HighOutput;
Indexer<eOutput, eComponent, e0D> LowOutput;
mFunctorIndexers (Input, HighOutput, LowOutput);

DWT1D (Axis axis, Radius radius) : Input (axis, radius) {}

void Kernel() { aﬁ %

float centre Input () ;

float high = (centre - (Input(-Input.Radius) +
I

nput (Input.Radius)) % 0.5f) * 0.5f;

HighOutput () = high; .
LowOutput () = centre - high; Vertical DWT
} (1:2 / Filter Skeleton)

'/ mOne-dimensional discrete wavelet transform, as indexed functor
B Compilable with standard C++ compiler
B Operates in either the horizontal or vertical axis

E Input indexer operates on RGB components separately
B |Input indexer accesses tradius elements in one (the axis) dimension
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B Use of iIndexed functors Is optimised
using a source-to-source compiler

(based on ROSE,
www.rosecompiler.org)

SIMD/SIMT
Indexed code Array contraction

Source Luer;ﬁgg generation and scratchpad
code staging

GBI Indexed
y functor Polyhedral

dependence representation
metadata of composite

iteration space :
DAG DAG P — loop fusion

Schedule
transformation

Code generation
Vendor compiler

Functor

=101V (SM composition
DAG for
visual effect

scheduling




4GB
Commodity
DRAM

«86| [xa6| xas| kasC Ixa6

4-lane |4-lane| |4-lang| [4-lane 4-lane|
SIMD| (SIMD| |SIMD| [SIMD SIMD

B Lots of cache per thread
B Lower DRAM bandwidth

SIMD Multicore CPU

1GB
Highly-interleaved
DRAM

Scratchpad memory

32 ||132| 32| 32| 32| 32 || 32
lane |[lane||lane||lane||lane || lane||lane
32X || 32x || 32x || 32x || 32x || 32x || 32x
SMT||SMT||SMT||SMT||[SMT| SMT||SMT
SIMT|IISIMT|SIMT||SIMT|SIMT||SIMT||SIMT]

x24

32
lane
32x

SMT
SIMT

B Very, very little cache per

thread

B Very small scratchpad
RAM shared by blocks of

threads

B Higher DRAM bandwidth
SIMT Manycore GPU
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Code generation for conventional PC with
SSE (“SIMD”) instructions:

BAggressive loop fusion and array contraction

B Using the CLo0G code generator to generate the loop
fragments

BVectorisation and Scalar promotion
B Correctness guaranteed by dependence metadata

Bif-conversion
B Generate code to use masks to track conditionals

BEMemory access realignment:

B |In SIMD architectures where contiguous, aligned
loads/stores are faster, placement of intermediate data is
guided by metadata to make this so

BContracted load/store rescheduling:

B Filters require mis-aligned SIMD loads

B After contraction, these can straddle the end of the circular
buffer — we need them to wrap-around

B \We use a double-buffer trick...
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B Constant/shared memory staging

B Where data needed by adjacent threads overlaps, we generate
code to stage image sub-blocks in scratchpad memory

EMaximising parallelism

I Moving-average filters are common in VFX, and involve a loop-
carried dependence

B We catch this case with a special “eMoving” index type

B We create enough threads to fill the machine, while efficiently
computing a moving average within each thread

ECoordinated coalesced memory access

B We shift a kernel’s iteration space, if necessary, to arrange an
thread-to-data mapping that satisfies the alignment requirements
for high-bandwidth, coalesced access to global memory

B We introduce transposes to achieve coalescing in horizontal
moving-average filters

BEChoosing optimal scheduling parameters

I Resource management and scheduling parameters are derived
from indexed functor metadata, and used to select optimal
mapping of threads onto processors.
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Domain-specific “active” library Visu

encapsulates specialist
performance expertise

Each new platform requires new
performance tuning effort

So domain-specialists will be
doing the performance tuning

Our challenge Is to support
them

GPU

al effects
Finite element

Linear algebra
Game physics
Finite difference

Applications

Exotic hardware

Multicore FPGA Quantum?
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Parallelism is B Eckert was right —

everywhere . : E Avoid parallel
Parallelism is . A 4 o programming!

essential | B B [solate ordinary software
from parallelism

Parallelism is
disruptive — it

breaks abstractions ¢

Eckert was wrong — we just | Tools to build really

need the right... clever parallel
') . implementations

Tools to deliver them

B Language

Machine And protect us from

Discipline ‘ what lurks below
Abstractions 3

Education




